Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,593
result(s) for
"Ali, Rizwan"
Sort by:
Artificial Intelligence for Assessment and Feedback to Enhance Student Success in Higher Education
by
Hossain, Md Shamim
,
Rana, Chhavi
,
Hooda, Monika
in
Algorithms
,
Artificial intelligence
,
Comparative studies
2022
The core focus of this review is to show how immediate and valid feedback, qualitative assessment influence enhances students learning in a higher education environment. With the rising trend of online education especially in this COVID-19 pandemic, the role of assessment and feedback also changes. Earlier the assessment part is not considered the main focus in learning and teaching in HEIs, but now with the increase in online education, it is observed that the paradigm is shifted toward assessing those activities of students that enhance their learning outcomes. A lot of research work has been done on developing assessment strategies and techniques that can support learning and teaching effectively. Yet, there is limited research that looks at how methods applied in learning analytics can be used and possibly constitutes the assessment process. The objective of this work is to provide an exploratory and comparative study of how assessment and feedback practices can enhance students learning outcomes using AI. The key contribution of this study attempts to capture an outline of the most used artificial intelligence and machine learning algorithms for student success. The results showed that I-FCN performed better than other techniques (ANN, XG Boost, SVM, Random Forest, and Decision Trees) in all measured performance metrics. Also, the result of the comparative analysis study will help the educators, instructors, and administrators on how they could take the advantage of a data-driven approach, design less pressurized, more valid, reliable, constructive assessment findings, and connect the power of assessment and feedback to enhance the learning outcomes.
Journal Article
Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations
by
Jafar, Abbas
,
Sadeghi-Niaraki, Abolghasem
,
Bibi, Nabila
in
Agricultural production
,
Agricultural research
,
Algorithms
2024
Accurate and rapid plant disease detection is critical for enhancing long-term agricultural yield. Disease infection poses the most significant challenge in crop production, potentially leading to economic losses. Viruses, fungi, bacteria, and other infectious organisms can affect numerous plant parts, including roots, stems, and leaves. Traditional techniques for plant disease detection are time-consuming, require expertise, and are resource-intensive. Therefore, automated leaf disease diagnosis using artificial intelligence (AI) with Internet of Things (IoT) sensors methodologies are considered for the analysis and detection. This research examines four crop diseases: tomato, chilli, potato, and cucumber. It also highlights the most prevalent diseases and infections in these four types of vegetables, along with their symptoms. This review provides detailed predetermined steps to predict plant diseases using AI. Predetermined steps include image acquisition, preprocessing, segmentation, feature selection, and classification. Machine learning (ML) and deep understanding (DL) detection models are discussed. A comprehensive examination of various existing ML and DL-based studies to detect the disease of the following four crops is discussed, including the datasets used to evaluate these studies. We also provided the list of plant disease detection datasets. Finally, different ML and DL application problems are identified and discussed, along with future research prospects, by combining AI with IoT platforms like smart drones for field-based disease detection and monitoring. This work will help other practitioners in surveying different plant disease detection strategies and the limits of present systems.
Journal Article
A novel SpaSA based hyper-parameter optimized FCEDN with adaptive CNN classification for skin cancer detection
2024
Skin cancer is the most prevalent kind of cancer in people. It is estimated that more than 1 million people get skin cancer every year in the world. The effectiveness of the disease’s therapy is significantly impacted by early identification of this illness. Preprocessing is the initial detecting stage in enhancing the quality of skin images by removing undesired background noise and objects. This study aims is to compile preprocessing techniques for skin cancer imaging that are currently accessible. Researchers looking into automated skin cancer diagnosis might use this article as an excellent place to start. The fully convolutional encoder–decoder network and Sparrow search algorithm (FCEDN-SpaSA) are proposed in this study for the segmentation of dermoscopic images. The individual wolf method and the ensemble ghosting technique are integrated to generate a neighbour-based search strategy in SpaSA for stressing the correct balance between navigation and exploitation. The classification procedure is accomplished by using an adaptive CNN technique to discriminate between normal skin and malignant skin lesions suggestive of disease. Our method provides classification accuracies comparable to commonly used incremental learning techniques while using less energy, storage space, memory access, and training time (only network updates with new training samples, no network sharing). In a simulation, the segmentation performance of the proposed technique on the ISBI 2017, ISIC 2018, and PH2 datasets reached accuracies of 95.28%, 95.89%, 92.70%, and 98.78%, respectively, on the same dataset and assessed the classification performance. It is accurate 91.67% of the time. The efficiency of the suggested strategy is demonstrated through comparisons with cutting-edge methodologies.
Journal Article
DSCC_Net: Multi-Classification Deep Learning Models for Diagnosing of Skin Cancer Using Dermoscopic Images
by
Naeem, Ahmad
,
Malik, Hassaan
,
Tanveer, Jawad
in
Accuracy
,
Artificial intelligence
,
Basal cell carcinoma
2023
Skin cancer is one of the most lethal kinds of human illness. In the present state of the health care system, skin cancer identification is a time-consuming procedure and if it is not diagnosed initially then it can be threatening to human life. To attain a high prospect of complete recovery, early detection of skin cancer is crucial. In the last several years, the application of deep learning (DL) algorithms for the detection of skin cancer has grown in popularity. Based on a DL model, this work intended to build a multi-classification technique for diagnosing skin cancers such as melanoma (MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanocytic nevi (MN). In this paper, we have proposed a novel model, a deep learning-based skin cancer classification network (DSCC_Net) that is based on a convolutional neural network (CNN), and evaluated it on three publicly available benchmark datasets (i.e., ISIC 2020, HAM10000, and DermIS). For the skin cancer diagnosis, the classification performance of the proposed DSCC_Net model is compared with six baseline deep networks, including ResNet-152, Vgg-16, Vgg-19, Inception-V3, EfficientNet-B0, and MobileNet. In addition, we used SMOTE Tomek to handle the minority classes issue that exists in this dataset. The proposed DSCC_Net obtained a 99.43% AUC, along with a 94.17%, accuracy, a recall of 93.76%, a precision of 94.28%, and an F1-score of 93.93% in categorizing the four distinct types of skin cancer diseases. The rates of accuracy for ResNet-152, Vgg-19, MobileNet, Vgg-16, EfficientNet-B0, and Inception-V3 are 89.32%, 91.68%, 92.51%, 91.12%, 89.46% and 91.82%, respectively. The results showed that our proposed DSCC_Net model performs better as compared to baseline models, thus offering significant support to dermatologists and health experts to diagnose skin cancer.
Journal Article
Machine Learning-Enabled Smart Industrial Automation Systems Using Internet of Things
by
Alomar, Madani Abdu
,
Alqahtani, Khaled N.
,
Basingab, Mohammed Salem
in
Algorithms
,
Automation
,
elaborative stepwise stacked artificial neural networks (ESSANN) algorithm
2022
Industrial automation uses robotics and software to operate equipment and procedures across industries. Many applications integrate IoT, machine learning, and other technologies to provide smart features that improve the user experience. The use of such technology offers businesses and people tremendous assistance in successfully achieving commercial and noncommercial requirements. Organizations are expected to automate industrial processes owing to the significant risk management and inefficiency of conventional processes. Hence, we developed an elaborative stepwise stacked artificial neural network (ESSANN) algorithm to greatly improve automation industries in controlling and monitoring the industrial environment. Initially, an industrial dataset provided by KLEEMANN Greece was used. The collected data were then preprocessed. Principal component analysis (PCA) was used to extract features, and feature selection was based on least absolute shrinkage and selection operator (LASSO). Subsequently, the ESSANN approach is proposed to improve automation industries. The performance of the proposed algorithm was also examined and compared with that of existing algorithms. The key factors compared with existing technologies are delay, network bandwidth, scalability, computation time, packet loss, operational cost, accuracy, precision, recall, and mean absolute error (MAE). Compared to traditional algorithms for industrial automation, our proposed techniques achieved high results, such as a delay of approximately 52%, network bandwidth accomplished at 97%, scalability attained at 96%, computation time acquired at 59 s, packet loss achieved at a minimum level of approximately 53%, an operational cost of approximately 59%, accuracy of 98%, precision of 98.95%, recall of 95.02%, and MAE of 80%. By analyzing the results, it can be seen that the proposed system was effectively implemented.
Journal Article
Aggregation-Based Dynamic Channel Bonding to Maximise the Performance of Wireless Local Area Networks (WLAN)
by
Karras, Dimitrios A.
,
Ahmadi, Fardin
,
Altamirano, Gilder Cieza
in
Agglomeration
,
Algorithms
,
Bandwidths
2022
Channel bonding is considered by the IEEE 802.11ac amendment to improve wireless local area network (WLAN) performance. In this article, the channel bonding and aggregation method were proposed to increase wireless local area network performance (WLANs). It combines many channels (or lanes) to boost the capacity of modem traffic. Channel bonding is the combination of two neighbouring channels within a certain frequency band to increase wireless device throughput. Wi-Fi employs channel bonding, also known as Ethernet bonding. Channel bandwidth is equal to the uplink/downlink ratio multiplied by the operational capacity. A single 20 MHz channel is divided into two, four, or eight power channels. At 80 MHz, there are more main and smaller channels. Performance of short-range WLANs is determined through graph-based approach. The two-channel access techniques including channel bonding proposed for the IEEE 802.11ac amendment are analysed and contrasted. The novel channel sizing algorithm based on starvation threshold is proposed to expand the channel size to improve WLAN performance. Second-cycle throughput is estimated at 20 Mbps, much beyond the starvation threshold. Our test reveals access points (AP) 1, 2, and 4 have enough throughput. A four-AP WLAN with a 5-Mbps starvation threshold is presented. C160 = 1 since there is only one 160 MHz channel. MIR (3, 160 (a, a, a)) =0, indicating that AP 3’s predicted throughput is 0. The algorithm rejects the 160 MHz channel width since ST is larger than 0. The channel width in MHz is given by B =0,1 MIR. The MIR was intended to maximise simultaneous broadcasts in WLANs. The authors claim that aggregation with channel bonding outperforms so all WLAN APs should have a single-channel width. It usually outperforms fairness-based measures by 15% to 20%. Wi-Fi standards advise “channel bonding,” or using higher frequency channels. Later standards allow channel bonding by increasing bands and channel lengths. Wider channels enhance average WLAN AP throughput, but narrower channels reduce appetite. Finally, it is concluded that APs are more useful than STAs.
Journal Article
IoT-Based Sustainable Energy Solutions for Small and Medium Enterprises (SMEs)
by
Fotis, Georgios
,
Alomar, Madani Abdu
,
Alshahrani, Reem
in
Alternative energy sources
,
Biomass energy
,
Energy conservation
2024
SMEs are asked to incorporate sustainable energy solutions into their organizations’ processes to be environmentally friendly and operate more effectively. In this regard, IoT-based technologies seem to have the potential to monitor and optimize energy use. However, more extensive research is required to assess the efficacy of such solutions in the context of SMEs. Despite the growing interest in the Internet of Things (IoT) for renewable energy, there is a lack of information on how well these solutions work for small and medium-sized enterprises (SMEs). While much of the existing literature addresses the application of new technologies in SMEs, the social background underlying their transformation received relatively little attention in previous years. The present research adopts a quantitative approach, employing time series forecasting, specifically long short-term memory networks (LSTM). This paper uses IoT-based approaches to collect and preprocess an energy consumption dataset from various SMEs. The LSTM model is intended to forecast energy consumption in the future based on experience. In terms of analysis, the study adopts Python for data preprocessing, constructing, and assessing models. The main findings reveal a strong positive correlation (r = 0.85) between base energy consumption and overall energy usage, suggesting that optimizing base consumption is crucial for energy efficiency. In contrast, investment in RETs and staff training demonstrate weak correlations (r = 0.25 and r = 0.30, respectively) with energy consumption, indicating that these factors alone are insufficient for significant energy savings. The long short-term memory model used in the study accurately predicted future energy consumption trends with a mean absolute error of 5%. However, it struggled with high-frequency variations, showing up to 15% of mistakes. This research contributes to the literature in line with IoT-based sustainable energy solutions in SMEs, which has not been widely addressed. The findings highlight the critical role of integrating renewable energy technologies (RETs) and fostering a culture of energy efficiency, offering actionable insights for policymakers and business owners. With the application of Python in data analysis and model creation, this research shows a real-world approach to handling issues in sustainable energy management for SMEs.
Journal Article
Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor
by
Park, Kang
,
Batchuluun, Ganbayar
,
Yoon, Hyo
in
Automobile drivers
,
deep learning
,
driver attention
2018
A paradigm shift is required to prevent the increasing automobile accident deaths that are mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable information regarding a driver’s point of attention. Accurate and inexpensive gaze classification systems in cars can improve safe driving. However, monitoring real-time driving behaviors and conditions presents some challenges: dizziness due to long drives, extreme lighting variations, glasses reflections, and occlusions. Past studies on gaze detection in cars have been chiefly based on head movements. The margin of error in gaze detection increases when drivers gaze at objects by moving their eyes without moving their heads. To solve this problem, a pupil center corneal reflection (PCCR)-based method has been considered. However, the error of accurately detecting the pupil center and corneal reflection center is increased in a car environment due to various environment light changes, reflections on glasses surface, and motion and optical blurring of captured eye image. In addition, existing PCCR-based methods require initial user calibration, which is difficult to perform in a car environment. To address this issue, we propose a deep learning-based gaze detection method using a near-infrared (NIR) camera sensor considering driver head and eye movement that does not require any initial user calibration. The proposed system is evaluated on our self-constructed database as well as on open Columbia gaze dataset (CAVE-DB). The proposed method demonstrated greater accuracy than the previous gaze classification methods.
Journal Article
Glaucoma Detection and Classification Using Improved U-Net Deep Learning Model
by
Farooq, Saadia
,
Nair, Rajit
,
Gangadharan, Syam Machinathu Parambil
in
Alzheimer's disease
,
Blood vessels
,
Deep learning
2022
Glaucoma is prominent in a variety of nations, with the United States and Europe being two of the most famous. Glaucoma now affects around 78 million people throughout the world (2020). By the year 2040, it is expected that there will be 111.8 million cases of glaucoma worldwide. In countries that are still building enough healthcare infrastructure to cope with glaucoma, the ailment is misdiagnosed nine times out of ten. To aid in the early diagnosis of glaucoma, the creation of a detection system is necessary. In this work, the researchers propose using a technology known as deep learning to identify and predict glaucoma before symptoms appear. The glaucoma dataset is used in this deep learning algorithm that has been proposed for analyzing glaucoma images. To get the required results when using deep learning principles for the job of segmenting the optic cup, pretrained transfer learning models are integrated with the U-Net architecture. For feature extraction, the DenseNet-201 deep convolution neural network (DCNN) is used. The DCNN approach is used to determine whether a person has glaucoma. The fundamental goal of this line of research is to recognize glaucoma in retinal fundus images, which will aid in assessing whether a patient has the condition. Because glaucoma can affect the model in both positive and negative ways, the model’s outcome might be either positive or negative. Accuracy, precision, recall, specificity, the F-measure, and the F-score are some of the metrics used in the model evaluation process. An extra comparison study is performed as part of the process of establishing whether the suggested model is accurate. The findings are compared to convolution neural network classification methods based on deep learning. When used for training, the suggested model has an accuracy of 98.82 percent and an accuracy of 96.90 percent when used for testing. All assessments show that the new paradigm that has been proposed is more successful than the one that is currently in use.
Journal Article
DMFL_Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-rays
by
Naeem, Ahmad
,
Loh, Woong-Kee
,
Malik, Hassaan
in
Algorithms
,
Artificial intelligence
,
Classification
2023
Coronavirus Disease 2019 (COVID-19) is still a threat to global health and safety, and it is anticipated that deep learning (DL) will be the most effective way of detecting COVID-19 and other chest diseases such as lung cancer (LC), tuberculosis (TB), pneumothorax (PneuTh), and pneumonia (Pneu). However, data sharing across hospitals is hampered by patients’ right to privacy, leading to unexpected results from deep neural network (DNN) models. Federated learning (FL) is a game-changing concept since it allows clients to train models together without sharing their source data with anybody else. Few studies, however, focus on improving the model’s accuracy and stability, whereas most existing FL-based COVID-19 detection techniques aim to maximize secondary objectives such as latency, energy usage, and privacy. In this work, we design a novel model named decision-making-based federated learning network (DMFL_Net) for medical diagnostic image analysis to distinguish COVID-19 from four distinct chest disorders including LC, TB, PneuTh, and Pneu. The DMFL_Net model that has been suggested gathers data from a variety of hospitals, constructs the model using the DenseNet-169, and produces accurate predictions from information that is kept secure and only released to authorized individuals. Extensive experiments were carried out with chest X-rays (CXR), and the performance of the proposed model was compared with two transfer learning (TL) models, i.e., VGG-19 and VGG-16 in terms of accuracy (ACC), precision (PRE), recall (REC), specificity (SPF), and F1-measure. Additionally, the DMFL_Net model is also compared with the default FL configurations. The proposed DMFL_Net + DenseNet-169 model achieves an accuracy of 98.45% and outperforms other approaches in classifying COVID-19 from four chest diseases and successfully protects the privacy of the data among diverse clients.
Journal Article