Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Allard, Jun F."
Sort by:
Cargo navigation across 3D microtubule intersections
by
Bergman, Jared P.
,
Vershinin, Michael D.
,
Bovyn, Matthew J.
in
3-D technology
,
Angles (geometry)
,
Biological Sciences
2018
The eukaryotic cell’s microtubule cytoskeleton is a complex 3D filament network. Microtubules cross at a wide variety of separation distances and angles. Prior studies in vivo and in vitro suggest that cargo transport is affected by intersection geometry. However, geometric complexity is not yet widely appreciated as a regulatory factor in its own right, and mechanisms that underlie this mode of regulation are not well understood. We have used our recently reported 3D microtubule manipulation system to build filament crossings de novo in a purified in vitro environment and used them to assay kinesin-1–driven model cargo navigation. We found that 3D microtubule network geometry indeed significantly influences cargo routing, and in particular that it is possible to bias a cargo to pass or switch just by changing either filament spacing or angle. Furthermore, we captured our experimental results in a model which accounts for full 3D geometry, stochastic motion of the cargo and associated motors, as well as motor force production and force-dependent behavior. We used a combination of experimental and theoretical analysis to establish the detailed mechanisms underlying cargo navigation at microtubule crossings.
Journal Article
Force generation by a dynamic Z-ring in Escherichia coli cell division
by
Allard, Jun F
,
Cytrynbaum, Eric N
in
bacteria
,
Bacterial proteins
,
Bacterial Proteins - physiology
2009
FtsZ, a bacterial homologue of tubulin, plays a central role in bacterial cell division. It is the first of many proteins recruited to the division site to form the Z-ring, a dynamic structure that recycles on the time scale of seconds and is required for division to proceed. FtsZ has been recently shown to form rings inside tubular liposomes and to constrict the liposome membrane without the presence of other proteins, particularly molecular motors that appear to be absent from the bacterial proteome. Here, we propose a mathematical model for the dynamic turnover of the Z-ring and for its ability to generate a constriction force. Force generation is assumed to derive from GTP hydrolysis, which is known to induce curvature in FtsZ filaments. We find that this transition to a curved state is capable of generating a sufficient force to drive cell-wall invagination in vivo and can also explain the constriction seen in the in vitro liposome experiments. Our observations resolve the question of how FtsZ might accomplish cell division despite the highly dynamic nature of the Z-ring and the lack of molecular motors.
Journal Article
A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis
by
Ambrose, Chris
,
Cytrynbaum, Eric N.
,
Wasteneys, Geoffrey O.
in
631/449/448/1408
,
631/45/612/1228
,
631/57/2266
2011
It is well known that the parallel order of microtubules in the plant cell cortex defines the direction of cell expansion, yet it remains unclear how microtubule orientation is controlled, especially on a cell-wide basis. Here we show through 4D imaging and computational modelling that plant cell polyhedral geometry provides spatial input that determines array orientation and heterogeneity. Microtubules depolymerize when encountering sharp cell edges head-on, whereas those oriented parallel to those sharp edges remain. Edge-induced microtubule depolymerization, however, is overcome by the microtubule-associated protein CLASP, which accumulates at specific cell edges, enables microtubule growth around sharp edges and promotes formation of microtubule bundles that span adjacent cell faces. By computationally modelling dynamic 'microtubules on a cube' with edges differentially permissive to microtubule passage, we show that the CLASP-edge complex is a 'tuneable' microtubule organizer, with the inherent flexibility to generate the numerous cortical array patterns observed in nature.
How microtubules are organized correctly in plant cells is not well understood. Ambrose
et al
. use 4D imaging and computer modelling to show that sharp cell edges induce microtubule depolymerization and that the microtubule-associated protein CLASP mitigates this process to modulate array organization.
Journal Article
Roles of motor on-rate and cargo mobility in intracellular transport
2020
Molecular motors like kinesin are critical for cellular organization and biological function including in neurons. There is detailed understanding of how they move and how factors such as applied force and the presence of microtubule-associated proteins can alter this single-motor travel. In order to walk, the cargo-motor complex must first attach to a microtubule. This attachment process is less studied. Here, we use a combination of single-molecule bead experiments, modeling, and simulation to examine how cargos with kinesin-1 bind to microtubules. In experiment, we find that increasing cargo size and environment viscosity both significantly slow cargo binding time. We use modeling and simulation to examine how the single motor on rate translates to the on rate of the cargo. Combining experiment and modeling allows us to estimate the single motor on rate as 100 s-1. This is a much higher value than previous estimates. We attribute the difference between our measurements and previous estimates to two factors: first, we are directly measuring initial motor attachment (as opposed to re-binding of a second motor) and second, the theoretical framework allows us to account for missed events (i.e. binding events not detected by the experiments due to their short duration). This indicates that the mobility of the cargo itself, determined by its size and interaction with the cytoplasmic environment, play a previously underestimated role in determining intracellular transport kinetics. Competing Interest Statement The authors have declared no competing interest.
Steady-state MreB helices inside bacteria: dynamics without motors
2007
Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.
Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides
by
Xu, Ye
,
Flytzani-Stephanopoulos, Maria
,
Mavrikakis, Manos
in
Active sites
,
additives
,
Alkalies
2014
We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating–O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.
Journal Article
Single-atom catalysis of CO oxidation using Pt1/FeOx
2011
Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H
2
. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5
d
orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
An important goal for the improvement of certain heterogeneous catalysts is to decrease the amount of platinum required while maintaining high catalytic activity. Now, the practical synthesis of a stable catalyst consisting of isolated single platinum atoms anchored onto iron oxide nanocrystallites has been developed that exhibits high activity for CO oxidation.
Journal Article
Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms
2019
Despite the maximized metal dispersion offered by single-atom catalysts, further improvement of intrinsic activity can be hindered by the lack of neighboring metal atoms in these systems. Here we report the use of isolated Pt
1
atoms on ceria as “seeds” to develop a Pt-O-Pt ensemble, which is well-represented by a Pt
8
O
14
model cluster that retains 100% metal dispersion. The Pt atom in the ensemble is 100–1000 times more active than their single-atom Pt
1
/CeO
2
parent in catalyzing the low-temperature CO oxidation under oxygen-rich conditions. Rather than the Pt-O-Ce interfacial catalysis, the stable catalytic unit is the Pt-O-Pt site itself without participation of oxygen from the 10–30 nm-size ceria support. Similar Pt-O-Pt sites can be built on various ceria and even alumina, distinguishable by facile activation of oxygen through the paired Pt-O-Pt atoms. Extending this design to other reaction systems is a likely outcome of the findings reported here.
Single-atom metal catalysts offer maximized material efficiency, but there is large room to improve the intrinsic activity per metal atom for many reactions. Here, the authors demonstrate that the solution for CO oxidation is to tackle the issue of lacking neighboring Pt atoms in the single-atom Pt1/CeO2 system.
Journal Article
Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt 1 atoms
2019
Despite the maximized metal dispersion offered by single-atom catalysts, further improvement of intrinsic activity can be hindered by the lack of neighboring metal atoms in these systems. Here we report the use of isolated Pt
atoms on ceria as \"seeds\" to develop a Pt-O-Pt ensemble, which is well-represented by a Pt
O
model cluster that retains 100% metal dispersion. The Pt atom in the ensemble is 100-1000 times more active than their single-atom Pt
/CeO
parent in catalyzing the low-temperature CO oxidation under oxygen-rich conditions. Rather than the Pt-O-Ce interfacial catalysis, the stable catalytic unit is the Pt-O-Pt site itself without participation of oxygen from the 10-30 nm-size ceria support. Similar Pt-O-Pt sites can be built on various ceria and even alumina, distinguishable by facile activation of oxygen through the paired Pt-O-Pt atoms. Extending this design to other reaction systems is a likely outcome of the findings reported here.
Journal Article
Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides
2014
Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.
Journal Article