Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
8,632 result(s) for "Allen, William"
Sort by:
Temporal evolution of cortical ensembles promoting remote memory retrieval
Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.DeNardo et al. characterize TRAP2, which allows genetic access to neurons based on their activity, and use it to show that neuronal ensembles in prelimbic cortex for remote fear memory undergo dynamic changes during the first 14 days after learning.
Three-dimensional intact-tissue sequencing of single-cell transcriptional states
RNA sequencing samples the entire transcriptome but lacks anatomical information. In situ hybridization, on the other hand, can only profile a small number of transcripts. In situ sequencing technologies address these shortcomings but face a challenge in dense, complex tissue environments. Wang et al. combined an efficient sequencing approach with hydrogel-tissue chemistry to develop a multidisciplinary technology for three-dimensional (3D) intact-tissue RNA sequencing (see the Perspective by Knöpfel). More than 1000 genes were simultaneously mapped in sections of mouse brain at single-cell resolution to define cell types and circuit states and to reveal cell organization principles. Science , this issue p. eaat5691 ; see also p. 328 Wang et al . describe the development and application of an RNA sequencing technology to define cell types and circuit states in the mouse brain. Retrieving high-content gene-expression information while retaining three-dimensional (3D) positional anatomy at cellular resolution has been difficult, limiting integrative understanding of structure and function in complex biological tissues. We developed and applied a technology for 3D intact-tissue RNA sequencing, termed STARmap (spatially-resolved transcript amplicon readout mapping), which integrates hydrogel-tissue chemistry, targeted signal amplification, and in situ sequencing. The capabilities of STARmap were tested by mapping 160 to 1020 genes simultaneously in sections of mouse brain at single-cell resolution with high efficiency, accuracy, and reproducibility. Moving to thick tissue blocks, we observed a molecularly defined gradient distribution of excitatory-neuron subtypes across cubic millimeter–scale volumes (>30,000 cells) and a short-range 3D self-clustering in many inhibitory-neuron subtypes that could be identified and described with 3D STARmap.
Thirst regulates motivated behavior through modulation of brainwide neural population dynamics
How is it that groups of neurons dispersed through the brain interact to generate complex behaviors? Three papers in this issue present brain-scale studies of neuronal activity and dynamics (see the Perspective by Huk and Hart). Allen et al. found that in thirsty mice, there is widespread neural activity related to stimuli that elicit licking and drinking. Individual neurons encoded task-specific responses, but every brain area contained neurons with different types of response. Optogenetic stimulation of thirst-sensing neurons in one area of the brain reinstated drinking and neuronal activity across the brain that previously signaled thirst. Gründemann et al. investigated the activity of mouse basal amygdala neurons in relation to behavior during different tasks. Two ensembles of neurons showed orthogonal activity during exploratory and nonexploratory behaviors, possibly reflecting different levels of anxiety experienced in these areas. Stringer et al. analyzed spontaneous neuronal firing, finding that neurons in the primary visual cortex encoded both visual information and motor activity related to facial movements. The variability of neuronal responses to visual stimuli in the primary visual area is mainly related to arousal and reflects the encoding of latent behavioral states. Science , this issue p. eaav3932 , p. eaav8736 , p. eaav7893 ; see also p. 236 Water deprivation establishes a brainwide activity state that gates how sensory stimuli produce behavioral responses. Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior in 21 mice as they consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. After satiation, focal optogenetic activation of hypothalamic thirst-sensing neurons returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions that determine how a brainwide dynamical system transforms sensory input into behavioral output.
Interspecific visual signalling in animals and plants: a functional classification
Organisms frequently gain advantages when they engage in signalling with individuals of other species. Here, we provide a functionally structured framework of the great variety of interspecific visual signals seen in nature, and then describe the different signalling mechanisms that have evolved in response to each of these functional requirements. We propose that interspecific visual signalling can be divided into six major functional categories: anti-predator, food acquisition, anti-parasite, host acquisition, reproductive and agonistic signalling, with each function enabled by several distinct mechanisms. We support our classification by reviewing the ecological and behavioural drivers of interspecific signalling in animals and plants, principally focusing on comparative studies that address large-scale patterns of diversity. Collating diverse examples of interspecific signalling into an organized set of functional and mechanistic categories places anachronistic behavioural and morphological labels in fresh context, clarifies terminology and redirects research effort towards understanding environmental influences driving interspecific signalling in nature. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.
Dynamic salience processing in paraventricular thalamus gates associative learning
The paraventricular thalamus is a relay station connecting brainstem and hypothalamic signals that represent internal states with the limbic forebrain that performs associative functions in emotional contexts. Zhu et al. found that paraventricular thalamic neurons represent multiple salient features of sensory stimuli, including reward, aversiveness, novelty, and surprise. The nucleus thus provides context-dependent salience encoding. The thalamus gates sensory information and contributes to the sleep-wake cycle through its interactions with the cerebral cortex. Ren et al. recorded from neurons in the paraventricular thalamus and observed that both population and single-neuron activity were tightly coupled with wakefulness. Science , this issue p. 423 , p. 429 A brain region tracks context-dependent changes of the behavioral importance of a stimulus and controls associative learning. The salience of behaviorally relevant stimuli is dynamic and influenced by internal state and external environment. Monitoring such changes is critical for effective learning and flexible behavior, but the neuronal substrate for tracking the dynamics of stimulus salience is obscure. We found that neurons in the paraventricular thalamus (PVT) are robustly activated by a variety of behaviorally relevant events, including novel (“unfamiliar”) stimuli, reinforcing stimuli and their predicting cues, as well as omission of the expected reward. PVT responses are scaled with stimulus intensity and modulated by changes in homeostatic state or behavioral context. Inhibition of the PVT responses suppresses appetitive or aversive associative learning and reward extinction. Our findings demonstrate that the PVT gates associative learning by providing a dynamic representation of stimulus salience.