Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
127 result(s) for "Allison, Beth J."
Sort by:
Intervention against hypertension in the next generation programmed by developmental hypoxia
Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.
The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review
Fetal growth restriction (FGR) increases the risk of cardiovascular disease. There are currently no treatment options available; however, antioxidants have shown potential to improve cardiovascular deficits associated with FGR. This systematic review aimed to determine whether antenatal antioxidant intervention can effectively protect the developing cardiovascular system in FGR. We searched for interventional studies that used an antenatal antioxidant intervention to improve cardiac and/or vascular outcomes in FGR published between 01/1946 and 09/2024 using MEDLINE and Embase (PROSPERO: CRD42024503756). The risk of bias was assessed with SYRCLE. The studies were assessed for cardiovascular protection based on the percentage of cardiac and/or vascular deficits that were restored with the antioxidant treatment. Studies were characterised as showing strong cardiovascular protection (≥50% restoration), mild cardiovascular protection (>0% but <50% restoration), an antioxidant-only effect (this did not include control group which showed a change with antioxidant intervention compared to FGR) or no cardiovascular protection (0% restoration). Thirty-eight publications met the inclusion criteria, encompassing 43 studies and investigating 15 antioxidant interventions. Moreover, 29/43 studies (71%) reported the restoration of at least one cardiac or vascular deficit with antioxidant intervention, and 21/43 studies (51%) were classified as strong cardiovascular protection. An ex vivo analysis of the arterial function in seven studies revealed endothelial dysfunction in growth-restricted offspring and antioxidant interventions restored the endothelial function in all cases. Additionally, four studies demonstrated that antioxidants reduced peroxynitrite-mediated oxidative stress. Notably, only 13/43 studies (32%) delayed antioxidant administration until after the induction of FGR. Antenatal antioxidant interventions show promise for providing cardiovascular protection in FGR. Melatonin was the most frequently studied intervention followed by nMitoQ, vitamin C and N-acetylcysteine, all of which demonstrated a strong capacity to reduce oxidative stress and improve nitric oxide bioavailability in the cardiovascular system of growth-restricted offspring; however, this systematic review highlights critical knowledge gaps and inconsistencies in preclinical research, which hinder our ability to determine which antioxidant treatments are currently suitable for clinical translation.
Perinatal Brain Injury As a Consequence of Preterm Birth and Intrauterine Inflammation: Designing Targeted Stem Cell Therapies
Chorioamnionitis is a major cause of preterm birth and brain injury. Bacterial invasion of the chorion and amnion, and/or the placenta, can lead to a fetal inflammatory response, which in turn has significant adverse consequences for the developing fetal brain. Accordingly, there is a strong causal link between chorioamnionitis, preterm brain injury and the pathogenesis of severe postnatal neurological deficits and cerebral palsy. Currently there are no treatments to protect or repair against brain injury in preterm infants born after pregnancy compromised by intrauterine infection. This review describes the injurious cascade of events in the preterm brain in response to a severe fetal inflammatory event. We will highlight specific periods of increased vulnerability, and the potential effects of therapeutic intervention with cell-based therapies. Many clinical trials are underway to investigate the efficacy of stem cells to treat patients with cerebral palsy. Stem cells, obtained from umbilical cord tissue and cord blood, normally discarded after birth, are emerging as a safe and potentially effective therapy. It is not yet known, however, which stem cell type(s) are the most efficacious for administration to preterm infants to treat brain injury-mediated inflammation. Individual stem cell populations found in cord blood and tissue, such as mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), have a number of potential benefits that may specifically target preterm inflammatory-induced brain injury. MSCs have strong immunomodulatory potential, protecting against global and local neuroinflammatory cascades triggered during infection to the fetus. EPCs have angiogenic and vascular reparative qualities that make them ideal for neurovascular repair. A combined therapy using both MSCs and EPCs to target inflammation and promote angiogenesis for re-establishment of vital vessel networks is a treatment concept that warrants further investigation.
Term vs. preterm cord blood cells for the prevention of preterm brain injury
BACKGROUND White matter brain injury in preterm infants can induce neurodevelopmental deficits. Umbilical cord blood (UCB) cells demonstrate neuroprotective properties, but it is unknown whether cells obtained from preterm cord blood (PCB) vs. term cord blood (TCB) have similar efficacy. This study compared the ability of TCB vs. PCB cells to reduce white matter injury in preterm fetal sheep. METHODS Hypoxia–ischemia (HI) was induced in fetal sheep (0.7 gestation) by 25 min umbilical cord occlusion. Allogeneic UCB cells from term or preterm sheep, or saline, were administered to the fetus at 12 h after HI. The fetal brain was collected at 10-day post HI for assessment of white matter neuropathology. RESULTS HI ( n =7) induced cell death and microglial activation and reduced total oligodendrocytes and CNPase+myelin protein in the periventricular white matter and internal capsule when compared with control ( n =10). Administration of TCB or PCB cells normalized white matter density and reduced cell death and microgliosis ( P <0.05). PCB prevented upregulation of plasma tumor necrosis factor (TNF)-a, whereas TCB increased anti-inflammatory interleukin (IL)-10 ( P <0.05). TCB, but not PCB, reduced circulating oxidative stress. CONCLUSIONS TCB and PCB cells reduced preterm HI-induced white matter injury, primarily via anti-inflammatory actions. The secondary mechanisms of neuroprotection appear different following TCB vs. PCB administration.
Myocardial perfusion and function dichotomy in growth restricted preterm infants
Compared to preterm appropriate for gestational age (AGA) fetuses, fetuses with fetal growth restriction (FGR) have earlier visualisation of coronary artery blood flow (CABF) but impaired cardiac function. This dichotomy remains uncharacterised during postnatal life. This study compared CABF and cardiac function in preterm FGR infants, against AGA infants during the postnatal period. FGR was defined as birthweight < 10th centile for gestation and sex with absent/reversed antenatal umbilical artery Doppler. Diastolic CABF was measured in the left anterior descending coronary artery. Twenty-eight FGR infants were compared with 26 AGA infants (gestation and birthweight, 29.7 ± 1.3 vs 29.9 ± 1 weeks, P = 0.6 and 918 ± 174 vs 1398 ± 263g, P < 0.001, respectively). Echocardiography was performed in the second week of life. FGR infants had higher CABF (velocity time integral, 2.4 ± 0.9 vs 1.6 ± 0.8 cm, P = 0.002). Diastolic function was impaired (↑ trans-mitral E/A ratio in FGR infants; 0.84 ± 0.05 vs 0.79 ± 0.03, P = 0.0002) while the systolic function was also affected (mean velocity of circumferential fibre shortening [mVCFc], 1.9 ± 0.3 vs 2.7 ± 0.5 circ/s, P < 0.001). Indexing CABF to cardiac function noted significant differences between the groups (CABF: E/A [FGR vs AGA], 2.9 ± 1.1 vs 2.1 ± 1, P = 0.01 and CABF: mVCFc [FGR vs AGA], 1.3 ± 0.5 vs 0.6 ± 0.3, P < 0.001). Diastolic blood pressure (BP) was significantly higher, and CABF to diastolic BP ratio trended higher in FGR infants (30 ± 2 vs 25 ± 3 mmHg, P < 0.001 and 0.08 ± 0.03 vs 0.06 ± 0.03, P = 0.059, respectively). Greater CABF in FGR infants did not translate into better cardiac function. This dichotomy may be a persistent response to fetal hypoxaemia (fetal programming) and/or reflection of altered cardiac architecture.
Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs
Background Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. Methods Twin-bearing ewes had surgery performed at 88–90 days’ gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 10 7 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. Results Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular–astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. Conclusions ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
The synergistic effects of mechanical ventilation and intrauterine inflammation on cerebral inflammation in preterm fetal sheep
Intrauterine inflammation and the requirement for mechanical ventilation independently increase the risk of perinatal brain injury and adverse neurodevelopmental outcomes. We aimed to investigate the effects of mechanical ventilation for 24 h, with and without prior exposure to intrauterine inflammation, on markers of brain inflammation and injury in the preterm sheep brain. Chronically instrumented fetal sheep at ~115 days of gestation were randomly allocated to receive a single intratracheal dose of 1 mg lipopolysaccharide (LPS) or isovolumetric saline, then further randomly allocated 1 h after to receive mechanical ventilation with room air or no mechanical ventilation (unventilated control + saline [UVC,  = 7]; mechanical ventilation + saline [VENT,  = 8], unventilated control + intratracheal LPS [UVC + LPS,  = 7]; ventilation + intratracheal LPS [VENT + LPS,  = 7]). Serial fetal blood and plasma samples were collected throughout the experimental protocol for assessment of blood biochemistry and plasma interleukin (IL)-6 levels. After 24 h of mechanical ventilation, fetal brains were collected for RT-qPCR and immunohistochemical analyses. LPS exposure increased numbers of microglia and upregulated pro-inflammatory related genes within the cortical gray matter (GM) and subcortical white matter (SCWM) (  < 0.05). Mechanical ventilation alone increased astrocytic cell density in the periventricular white matter (PVWM) (  = 0.03) but had no effect on pro-inflammatory gene expression. The combination of ventilation and LPS increased plasma IL-6 levels (  < 0.02 vs. UVC and VENT groups), and exacerbated expression of pro-inflammatory-related genes ( , , , ) and microglial density (  < 0.05 vs. VENT). This study demonstrates that 24 h of mechanical ventilation after exposure to intrauterine inflammation increased markers of systemic and brain inflammation and led to the upregulation of pro-inflammatory genes in the white matter. We conclude that 24 h of mechanical ventilation following intrauterine inflammation may precondition the preterm brain toward being more susceptible to inflammation-induced injury.
Does Antenatal Lactoferrin Protect Hippocampal Development in Ovine Fetuses with Growth Restriction?
Early-onset fetal growth restriction (FGR) is associated with prolonged fetoplacental hypoxia and altered brain development, including deficits in hippocampal structure and function. Neuroprotective actions of lactoferrin have been described, mediated via anti-inflammatory and antioxidant properties. Here, we investigated whether the antenatal administration of lactoferrin (1) improves hippocampal structure, (2) promotes neuronal growth, and (3) mitigates neuroinflammation in the hippocampus of fetal sheep with FGR. Early-onset FGR was induced by performing single umbilical artery ligation surgery on ovine fetuses at ~89 days gestational age (dGA; term ~148 dGA), compared with appropriate for gestational age (AGA) controls. Lactoferrin supplementation to the ewe commenced at 95 dGA (oral, 36 g/day) and continued until 127 dGA (fetal group) or birth (newborn group). Experimental fetal groups included control appropriate for gestational age (AGA; n = 8), FGR (n = 5), control + lactoferrin (AGA + Lacto; n = 6), and FGR + lactoferrin (FGR + Lacto; n = 6). In the fetal group, results showed that neither FGR nor lactoferrin altered hippocampal structure at 127 dGA. Lactoferrin exposure significantly increased neuronal abundance but also altered neuronal morphology. Lactoferrin increased the neurotrophic factor, brain-derived neurotrophic factor (BDNF) in the hippocampus. Lactoferrin exerted region-specific anti-inflammatory effects, with reduced total microglial cell count and resting microglia count in the (CA)3 region only. In the newborn cohort, we observed increased circulating haematocrit concentration in early life. These findings support that antenatal lactoferrin has an anti-inflammatory effect in the fetal brain and increases fetal brain neurotrophic factor BDNF. Still, prolonged exposure during pregnancy may yield mixed effects on fetal brain development and haematological balance.
Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs
Neonatal ventilation exacerbates brain injury in lambs with fetal growth restriction (FGR), characterized by neuroinflammation and reduced blood-brain barrier integrity, which is normally maintained by the neurovascular unit. We examined whether umbilical cord blood stem cell (UCBC) treatment stabilized the neurovascular unit and reduced brain injury in preterm ventilated FGR lambs. Surgery was performed in twin-bearing pregnant ewes at 88 days' gestation to induce FGR in one fetus. At 127 days, FGR and appropriate for gestational age (AGA) lambs were delivered, carotid artery flow probes and umbilical lines inserted, lambs intubated and commenced on gentle ventilation. Allogeneic ovine UCBCs (25 x 10.sup.6 cells/kg) were administered intravenously to lambs at 1 h of life. Lambs were ventilated for 24 h and then euthanized. FGR (n = 6) and FGR+UCBC (n = 6) lambs were growth restricted compared to AGA (n = 6) and AGA+UCBC (n = 6) lambs (combined weight, FGR 2.3 [+ or -] 0.4 vs. AGA 3.0 [+ or -] 0.3 kg; p = 0.0002). UCBC therapy did not alter mean arterial blood pressure or carotid blood flow but decreased cerebrovascular resistance in FGR+UCBC lambs. Circulating TNF-[alpha] cytokine levels were lower in FGR+UCBC vs. FGR lambs (p < 0.05). Brain histopathology showed decreased neuroinflammation and oxidative stress, increased endothelial cell proliferation, pericyte stability, and greater integrity of the neurovascular unit in FGR+UCBC vs. FGR lambs. Umbilical cord blood stem cell therapy mitigates perinatal brain injury due to FGR and ventilation, and the neuroprotective benefits may be mediated by stabilization of the neurovascular unit.
Does Antenatal Betamethasone Alter White Matter Brain Development in Growth Restricted Fetal Sheep?
Fetal growth restriction (FGR) is a common complication of pregnancy often associated with neurological impairments. Currently, there is no treatment for FGR, hence it is likely these babies will be delivered prematurely, thus being exposed to antenatal glucocorticoids. While there is no doubt that antenatal glucocorticoids reduce neonatal mortality and morbidities, their effects on the fetal brain, particularly in FGR babies, are less well recognized. We investigated the effects of both short- and long-term exposure to antenatal betamethasone treatment in both FGR and appropriately grown fetal sheep brains. Surgery was performed on pregnant Border-Leicester Merino crossbred ewes at 105-110 days gestation (term ~150 days) to induce FGR by single umbilical artery ligation (SUAL) or sham surgery. Ewes were then treated with a clinical dose of betamethasone (11.4 mg intramuscularly) or saline at 113 and 114 days gestation. Animals were euthanized at 115 days (48 h following the initial betamethasone administration) or 125 days (10 days following the initial dose of betamethasone) and fetal brains collected for analysis. FGR fetuses were significantly smaller than controls (115 days: 1.68 ± 0.11 kg vs. 1.99 ± 0.11 kg, 125 days: 2.70 ± 0.15 kg vs. 3.31 ± 0.20 kg, < 0.001) and betamethasone treatment reduced body weight in both control (115 days: 1.64 ± 0.10 kg, 125 days: 2.53 ± 0.10 kg) and FGR fetuses (115 days: 1.41 ± 0.10 kg, 125 days: 2.16 ± 0.17 kg, < 0.001). Brain: body weight ratios were significantly increased with FGR ( < 0.001) and betamethasone treatment ( = 0.002). Within the fetal brain, FGR reduced CNPase-positive myelin staining in the subcortical white matter (SCWM; = 0.01) and corpus callosum (CC; = 0.01), increased GFAP staining in the SCWM ( = 0.02) and reduced the number of Olig2 cells in the periventricular white matter (PVWM; = 0.04). Betamethasone treatment significantly increased CNPase staining in the external capsule (EC; = 0.02), reduced GFAP staining in the CC ( = 0.03) and increased Olig2 staining in the SCWM ( = 0.04). Here we show that FGR has progressive adverse effects on the fetal brain, particularly within the white matter. Betamethasone exacerbated growth restriction in the FGR offspring, but betamethasone did not worsen white matter brain injury.