Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
272
result(s) for
"Allsop, David"
Sort by:
Quantifying the Clinical Significance of Cannabis Withdrawal
2012
Questions over the clinical significance of cannabis withdrawal have hindered its inclusion as a discrete cannabis induced psychiatric condition in the Diagnostic and Statistical Manual of Mental Disorders (DSM IV). This study aims to quantify functional impairment to normal daily activities from cannabis withdrawal, and looks at the factors predicting functional impairment. In addition the study tests the influence of functional impairment from cannabis withdrawal on cannabis use during and after an abstinence attempt.
A volunteer sample of 49 non-treatment seeking cannabis users who met DSM-IV criteria for dependence provided daily withdrawal-related functional impairment scores during a one-week baseline phase and two weeks of monitored abstinence from cannabis with a one month follow up. Functional impairment from withdrawal symptoms was strongly associated with symptom severity (p=0.0001). Participants with more severe cannabis dependence before the abstinence attempt reported greater functional impairment from cannabis withdrawal (p=0.03). Relapse to cannabis use during the abstinence period was associated with greater functional impairment from a subset of withdrawal symptoms in high dependence users. Higher levels of functional impairment during the abstinence attempt predicted higher levels of cannabis use at one month follow up (p=0.001).
Cannabis withdrawal is clinically significant because it is associated with functional impairment to normal daily activities, as well as relapse to cannabis use. Sample size in the relapse group was small and the use of a non-treatment seeking population requires findings to be replicated in clinical samples. Tailoring treatments to target withdrawal symptoms contributing to functional impairment during a quit attempt may improve treatment outcomes.
Journal Article
Magnetite pollution nanoparticles in the human brain
by
Ahmed, Imad A. M.
,
Allsop, David
,
Maher, Barbara A.
in
"Earth, Atmospheric, and Planetary Sciences"
,
Air pollution
,
Airborne particulates
2016
Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683–7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.
Journal Article
Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome
by
Kakeya, Tomoshi
,
Tatebe, Harutsugu
,
Tokuda, Takahiko
in
Aged
,
Aged, 80 and over
,
Alzheimer Disease - blood
2017
Background
There is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer’s disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD.
Methods
We have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts.
Results
In the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls,
p
= 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls,
p
= 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls,
p
= 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R
2
= 0.4451,
p
= 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R
2
= 0.4525,
p
= 0.023).
Conclusions
We report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to validate the usefulness of plasma p-tau181 as an urgently needed surrogate marker for the diagnosis and disease progression of AD.
Journal Article
Bace1-dependent amyloid processing regulates hypothalamic leptin sensitivity in obese mice
2018
Obesity places an enormous medical and economic burden on society. The principal driver appears to be central leptin resistance with hyperleptinemia. Accordingly, a compound that reverses or prevents leptin resistance should promote weight normalisation and improve glucose homeostasis. The protease Bace1 drives beta amyloid (Aβ) production with obesity elevating hypothalamic Bace1 activity and Aβ
1–42
production. Pharmacological inhibition of Bace1 reduces body weight, improves glucose homeostasis and lowers plasma leptin in diet-induced obese (DIO) mice. These actions are not apparent in
ob/ob
or
db/db
mice, indicating the requirement for functional leptin signalling. Decreasing Bace1 activity normalises hypothalamic inflammation, lowers PTP1B and SOCS3 and restores hypothalamic leptin sensitivity and pSTAT3 response in obese mice, but does not affect leptin sensitivity in lean mice. Raising central Aβ
1–42
levels in the early stage of DIO increases hypothalamic basal pSTAT3 and reduces the amplitude of the leptin pSTAT3 signal without increased inflammation. Thus, elevated Aβ
1–42
promotes hypothalamic leptin resistance, which is associated with diminished whole-body sensitivity to exogenous leptin and exacerbated body weight gain in high fat fed mice. These results indicate that Bace1 inhibitors, currently in clinical trials for Alzheimer’s disease, may be useful agents for the treatment of obesity and associated diabetes.
Journal Article
Differential diagnosis of Alzheimer’s disease using spectrochemical analysis of blood
by
Paraskevaidi, Maria
,
Martin, Francis L.
,
Allsop, David
in
Alleles
,
Alzheimer's disease
,
Apolipoprotein E
2017
The progressive aging of the world’s population makes a higher prevalence of neurodegenerative diseases inevitable. The necessity for an accurate, but at the same time, inexpensive and minimally invasive, diagnostic test is urgently required, not only to confirm the presence of the disease but also to discriminate between different types of dementia to provide the appropriate management and treatment. In this study, attenuated total reflection FTIR (ATR-FTIR) spectroscopy combined with chemometric techniques were used to analyze blood plasma samples from our cohort. Blood samples are easily collected by conventional venepuncture, permitting repeated measurements from the same individuals to monitor their progression throughout the years or evaluate any tested drugs. We included 549 individuals: 347 with various neurodegenerative diseases and 202 age-matched healthy individuals. Alzheimer’s disease (AD; n = 164) was identified with 70% sensitivity and specificity, which after the incorporation of apolipoprotein ε4 genotype (APOE ε4) information, increased to 86% when individuals carried one or two alleles of ε4, and to 72% sensitivity and 77% specificity when individuals did not carry ε4 alleles. Early AD cases (n = 14) were identified with 80% sensitivity and 74% specificity. Segregation of AD from dementia with Lewy bodies (DLB; n = 34) was achieved with 90% sensitivity and specificity. Other neurodegenerative diseases, such as frontotemporal dementia (FTD; n = 30), Parkinson’s disease (PD; n = 32), and progressive supranuclear palsy (PSP; n = 31), were included in our cohort for diagnostic purposes. Our method allows for both rapid and robust diagnosis of neurodegeneration and segregation between different dementias.
Journal Article
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK
by
Ahmed, Imad A. M.
,
Hammond, Jessica
,
Allsop, David
in
631/378
,
631/378/1689/1283
,
639/301/357/997
2021
The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer’s disease (AD) and pathologically-unremarkable brains (80–98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood–brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.
Journal Article
Amyotrophic lateral sclerosis: Correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics
by
Ohmichi, Takuma
,
Shinomoto, Makiko
,
Kasai, Takashi
in
Aged
,
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - blood
2021
We previously reported the diagnostic and prognostic performance of neurofilament light chain (NfL), TAR DNA-binding protein 43 (TDP-43), and total tau (t-tau) in cerebrospinal fluid (CSF) and plasma as amyotrophic lateral sclerosis (ALS) biomarkers. The present study aimed to elucidate associations between clinical characteristics and the markers as well as mutual associations of the markers in ALS patients using the same dataset.
NfL, TDP-43, and t-tau levels in CSF and plasma in 75 ALS patients were analyzed. The associations between those markers and clinical details were investigated by uni- and multivariate analyses. Correlations between the markers were analyzed univariately.
In multivariate analysis of CSF proteins, the disease progression rate (DPR) was positively correlated with NfL (β: 0.51, p = 0.007) and t-tau (β: 0.37, p = 0.03). Plasma NfL was correlated with age (β: 0.53, p = 0.005) and diagnostic grade (β: -0.42, p = 0.02) in multivariate analysis. Plasma TDP-43 was correlated negatively with split hand index (β: -0.48, p = 0.04) and positively with % vital capacity (β: 0.64, p = 0.03) in multivariate analysis. Regarding mutual biomarker analysis, a negative correlation between CSF-NfL and TDP-43 was identified (r: -0.36, p = 0.002).
Elevated NfL and t-tau levels in CSF may be biomarkers to predict rapid DPR from onset to sample collection. The negative relationship between CSF NfL and TDP-43 suggests that elevation of CSF TDP-43 in ALS is not a simple consequence of its release into CSF during neurodegeneration. The negative correlation between plasma TDP-43 and split hand index may support the pathophysiological association between plasma TDP-43 and ALS.
Journal Article
What Does a Pregnancy Loss Mean for Sex? Comparing Sexual Well-Being Between Couples With and Without a Recent Loss
by
Bagnell, K. Brenna
,
Huberman, Jackie S.
,
Cohen, Eva
in
Behavioral Science and Psychology
,
Couples
,
Cross-Sectional Studies
2024
It is unclear whether sexual well-being, which is an important part of individual and relational health, may be at risk for declines after a pregnancy loss given the limits of prior work. Accordingly, in a cross-sectional study, we used structural equation modeling to (1) compare sexual well-being levels—satisfaction, desire, function, distress, and frequency—of both partners in couples who had experienced a pregnancy loss in the past four months (
N
= 103 couples) to their counterparts in a control sample of couples with no history of pregnancy loss (
N
= 120 couples), and (2) compare sexual well-being levels of each member of a couple to one another. We found that gestational individuals and their partners in the pregnancy loss sample were less sexually satisfied than their control counterparts but did not differ in sexual desire, problems with sexual function, nor sexual frequency. Surprisingly, we found that partners of gestational individuals had less sexual distress than their control counterparts. In the pregnancy loss sample, gestational individuals had lower levels of sexual desire post-loss than their partners but did not differ in sexual satisfaction, problems with sexual function, nor sexual distress. Our results provide evidence that a recent pregnancy loss is associated with lower sexual satisfaction and greater differences between partners in sexual desire, which may be useful information for clinicians working with couples post-loss. Practitioners can share these findings with couples who may find it reassuring that we did not find many aspects of sexual well-being to be related to pregnancy loss at about three months post-loss.
Journal Article
Plasma neurofilament light chain: A potential prognostic biomarker of dementia in adult Down syndrome patients
2019
People with Down syndrome (DS) are at high risk of developing Alzheimer disease (AD) with aging. The diagnosis and treatment trials are hampered by a lack of reliable blood biomarkers. Plasma neurofilament light chain (NfL) is one of the established biomarkers of AD, suggesting that it may be useful as an indicator of dementia in DS patients. The aims of this study were: 1) to examine whether plasma levels of NfL in DS patients are correlated with decreased adaptive behavior scores one year after sample collection, and 2) to compare plasma levels of NfL in adults with DS and an age-matched healthy control population. In this study, plasma levels of NfL in 24 patients with DS and 24 control participants were measured by the single-molecule immunoarray (Simoa) method. We observed significantly increased plasma NfL levels in the DS compared with the control group. There was a significant correlation between age and levels of plasma NfL in both groups. This age-dependent elevation was steeper in the DS compared with the control group. Moreover, elevated plasma NfL was associated with decreased adaptive behavior scores one year later, after age-adjustment. Previously reported blood-based biomarkers available in Simoa for DS, plasma total tau and phosphorylated tau, were not significantly correlated with the annual decrement of adaptive behavior scores after age-adjustment. These results suggest that plasma NfL has the potential to serve as an objective biomarker to predict dementia in adult DS patients.
Journal Article
Oxidative Stress, Cytotoxic and Inflammatory Effects of Urban Ultrafine Road-Deposited Dust from the UK and Mexico in Human Epithelial Lung (Calu-3) Cells
by
Gonet, Tomasz
,
Hammond, Jessica
,
Bautista, Francisco
in
Air pollution
,
Alzheimer's disease
,
Cadmium
2022
Road-deposited dust (RD) is a pervasive form of particulate pollution identified (typically via epidemiological or mathematical modelling) as hazardous to human health. Finer RD particle sizes, the most abundant (by number, not mass), may pose greater risk as they can access all major organs. Here, the first in vitro exposure of human lung epithelial (Calu-3) cells to 0–300 µg/mL of the ultrafine (<220 nm) fraction of road dust (UF-RDPs) from three contrasting cities (Lancaster and Birmingham, UK, and Mexico City, Mexico) resulted in differential oxidative, cytotoxic, and inflammatory responses. Except for Cd, Na, and Pb, analysed metals were most abundant in Mexico City UF-RDPs, which were most cytotoxic. Birmingham UF-RDPs provoked greatest ROS release (only at 300 µg/mL) and greatest increase in pro-inflammatory cytokine release. Lancaster UF-RDPs increased cell viability. All three UF-RDP samples stimulated ROS production and pro-inflammatory cytokine release. Mass-based PM limits seem inappropriate given the location-specific PM compositions and health impacts evidenced here. A combination of new, biologically relevant metrics and localised regulations appears critical to mitigating the global pandemic of health impacts of particulate air pollution and road-deposited dust.
Journal Article