Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Almaas, Eivind"
Sort by:
Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
by
Bernstein, David B.
,
Segrè, Daniel
,
Almaas, Eivind
in
Algorithms
,
Animal Genetics and Genomics
,
Annotations
2021
The reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.
Journal Article
Automated generation of genome-scale metabolic draft reconstructions based on KEGG
2018
Background
Constraint-based modeling is a widely used and powerful methodology to assess the metabolic phenotypes and capabilities of an organism. The starting point and cornerstone of all such modeling is a genome-scale metabolic network reconstruction. The creation, further development, and application of such networks is a growing field of research thanks to a plethora of readily accessible computational tools. While the majority of studies are focused on single-species analyses, typically of a microbe, the computational study of communities of organisms is gaining attention. Similarly, reconstructions that are unified for a multi-cellular organism have gained in popularity. Consequently, the rapid generation of genome-scale metabolic reconstructed networks is crucial. While multiple web-based or stand-alone tools are available for automated network reconstruction, there is, however, currently no publicly available tool that allows the swift assembly of draft reconstructions of community metabolic networks and consolidated metabolic networks for a specified list of organisms.
Results
Here, we present AutoKEGGRec, an automated tool that creates first draft metabolic network reconstructions of single organisms, community reconstructions based on a list of organisms, and finally a consolidated reconstruction for a list of organisms or strains. AutoKEGGRec is developed in Matlab and works seamlessly with the COBRA Toolbox v3, and it is based on only using the KEGG database as external input. The generated first draft reconstructions are stored in SBML files and consist of all reactions for a KEGG organism ID and corresponding linked genes. This provides a comprehensive starting point for further refinement and curation using the host of COBRA toolbox functions or other preferred tools. Through the data structures created, the tool also facilitates a comparative analysis of metabolic content in any given number of organisms present in the KEGG database.
Conclusion
AutoKEGGRec provides a first step in a metabolic network reconstruction process, filling a gap for tools creating community and consolidated metabolic networks. Based only on KEGG data as external input, the generated reconstructions consist of data with a directly traceable foundation and pedigree. With AutoKEGGRec, this kind of modeling is made accessible to a wider part of the genome-scale metabolic analysis community.
Journal Article
Parameter inference for enzyme and temperature constrained genome-scale models
2023
The metabolism of all living organisms is dependent on temperature, and therefore, having a good method to predict temperature effects at a system level is of importance. A recently developed Bayesian computational framework for enzyme and temperature constrained genome-scale models (etcGEM) predicts the temperature dependence of an organism’s metabolic network from thermodynamic properties of the metabolic enzymes, markedly expanding the scope and applicability of constraint-based metabolic modelling. Here, we show that the Bayesian calculation method for inferring parameters for an etcGEM is unstable and unable to estimate the posterior distribution. The Bayesian calculation method assumes that the posterior distribution is unimodal, and thus fails due to the multimodality of the problem. To remedy this problem, we developed an evolutionary algorithm which is able to obtain a diversity of solutions in this multimodal parameter space. We quantified the phenotypic consequences on six metabolic network signature reactions of the different parameter solutions resulting from use of the evolutionary algorithm. While two of these reactions showed little phenotypic variation between the solutions, the remainder displayed huge variation in flux-carrying capacity. This result indicates that the model is under-determined given current experimental data and that more data is required to narrow down the model predictions. Finally, we made improvements to the software to reduce the running time of the parameter set evaluations by a factor of 8.5, allowing for obtaining results faster and with less computational resources.
Journal Article
Genome-scale reconstructions to assess metabolic phylogeny and organism clustering
2020
Approaches for systematizing information of relatedness between organisms is important in biology. Phylogenetic analyses based on sets of highly conserved genes are currently the basis for the Tree of Life. Genome-scale metabolic reconstructions contain high-quality information regarding the metabolic capability of an organism and are typically restricted to metabolically active enzyme-encoding genes. While there are many tools available to generate draft reconstructions, expert-level knowledge is still required to generate and manually curate high-quality genome-scale metabolic models and to fill gaps in their reaction networks. Here, we use the tool AutoKEGGRec to construct 975 genome-scale metabolic draft reconstructions encoded in the KEGG database without further curation. The organisms are selected across all three domains, and their metabolic networks serve as basis for generating phylogenetic trees. We find that using all reactions encoded, these metabolism-based comparisons give rise to a phylogenetic tree with close similarity to the Tree of Life. While this tree is quite robust to reasonable levels of noise in the metabolic reaction content of an organism, we find a significant heterogeneity in how much noise an organism may tolerate before it is incorrectly placed in the tree. Furthermore, by using the protein sequences for particular metabolic functions and pathway sets, such as central carbon-, nitrogen-, and sulfur-metabolism, as basis for the organism comparisons, we generate highly specific phylogenetic trees. We believe the generation of phylogenetic trees based on metabolic reaction content, in particular when focused on specific functions and pathways, could aid the identification of functionally important metabolic enzymes and be of value for genome-scale metabolic modellers and enzyme-engineers.
Journal Article
Comparing the impact of vaccination strategies on the spread of COVID-19, including a novel household-targeted vaccination strategy
by
Voigt, André
,
Omholt, Stig
,
Almaas, Eivind
in
Asymptomatic
,
Biology and Life Sciences
,
Coronaviruses
2022
With limited availability of vaccines, an efficient use of the limited supply of vaccines in order to achieve herd immunity will be an important tool to combat the wide-spread prevalence of COVID-19. Here, we compare a selection of strategies for vaccine distribution, including a novel targeted vaccination approach (EHR) that provides a noticeable increase in vaccine impact on disease spread compared to age-prioritized and random selection vaccination schemes. Using high-fidelity individual-based computer simulations with Oslo, Norway as an example, we find that for a community reproductive number in a setting where the base pre-vaccination reproduction number R = 2.1 without population immunity, the EHR method reaches herd immunity at 48% of the population vaccinated with 90% efficiency, whereas the common age-prioritized approach needs 89%, and a population-wide random selection approach requires 61%. We find that age-based strategies have a substantially weaker impact on epidemic spread and struggle to achieve herd immunity under the majority of conditions. Furthermore, the vaccination of minors is essential to achieving herd immunity, even for ideal vaccines providing 100% protection.
Journal Article
Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition
by
Kumelj, Tjasa
,
Karlsen, Emil
,
Schulz, Christian
in
Acetic acid
,
Analysis
,
Biology and Life Sciences
2021
Genome-scale metabolic modeling is an important tool in the study of metabolism by enhancing the collation of knowledge, interpretation of data, and prediction of metabolic capabilities. A frequent assumption in the use of genome-scale models is that the in vivo organism is evolved for optimal growth, where growth is represented by flux through a biomass objective function (BOF). While the specific composition of the BOF is crucial, its formulation is often inherited from similar organisms due to the experimental challenges associated with its proper determination. A cell’s macro-molecular composition is not fixed and it responds to changes in environmental conditions. As a consequence, initiatives for the high-fidelity determination of cellular biomass composition have been launched. Thus, there is a need for a mathematical and computational framework capable of using multiple measurements of cellular biomass composition in different environments. Here, we propose two different computational approaches for directly addressing this challenge: Biomass Trade-off Weighting (BTW) and Higher-dimensional-plane InterPolation (HIP). In lieu of experimental data on biomass composition-variation in response to changing nutrient environment, we assess the properties of BTW and HIP using three hypothetical, yet biologically plausible, BOFs for the Escherichia coli genome-scale metabolic model i ML1515. We find that the BTW and HIP formulations have a significant impact on model performance and phenotypes. Furthermore, the BTW method generates larger growth rates in all environments when compared to HIP. Using acetate secretion and the respiratory quotient as proxies for phenotypic changes, we find marked differences between the methods as HIP generates BOFs more similar to a reference BOF than BTW. We conclude that the presented methods constitute a conceptual step in developing genome-scale metabolic modelling approaches capable of addressing the inherent dependence of cellular biomass composition on nutrient environments.
Journal Article
A study of a diauxic growth experiment using an expanded dynamic flux balance framework
by
Karlsen, Emil
,
Schulz, Christian
,
Almaas, Eivind
in
Analysis
,
Biology and Life Sciences
,
Cell metabolism
2023
Flux balance analysis (FBA) remains one of the most used methods for modeling the entirety of cellular metabolism, and a range of applications and extensions based on the FBA framework have been generated. Dynamic flux balance analysis (dFBA), the expansion of FBA into the time domain, still has issues regarding accessibility limiting its widespread adoption and application, such as a lack of a consistently rigid formalism and tools that can be applied without expert knowledge. Recent work has combined dFBA with enzyme-constrained flux balance analysis (decFBA), which has been shown to greatly improve accuracy in the comparison of computational simulations and experimental data, but such approaches generally do not take into account the fact that altering the enzyme composition of a cell is not an instantaneous process. Here, we have developed a decFBA method that explicitly takes enzyme change constraints (ecc) into account, decFBAecc. The resulting software is a simple yet flexible framework for using genome-scale metabolic modeling for simulations in the time domain that has full interoperability with the COBRA Toolbox 3.0. To assess the quality of the computational predictions of decFBAecc, we conducted a diauxic growth fermentation experiment with Escherichia coli BW25113 in glucose minimal M9 medium. The comparison of experimental data with dFBA, decFBA and decFBAecc predictions demonstrates how systematic analyses within a fixed constraint-based framework can aid the study of model parameters. Finally, in explaining experimentally observed phenotypes, our computational analysis demonstrates the importance of non-linear dependence of exchange fluxes on medium metabolite concentrations and the non-instantaneous change in enzyme composition, effects of which have not previously been accounted for in constraint-based analysis.
Journal Article
Assessment of weighted topological overlap (wTO) to improve fidelity of gene co-expression networks
2019
Background
For more than a decade, gene expression data sets have been used as basis for the construction of co-expression networks used in systems biology investigations, leading to many important discoveries in a wide range of subjects spanning human disease to evolution and the development of organisms. A commonly encountered challenge in such investigations is first that of detecting, then subsequently removing, spurious correlations (i.e. links) in these networks. While access to a large number of measurements per gene would reduce this problem, often only a small number of measurements are available. The weighted Topological Overlap (wTO) measure, which incorporates information from the shared network-neighborhood of a given gene-pair into a single score, is a metric that is frequently used with the implicit expectation of producing higher-quality networks. However, the actual extent to which wTO improves on the accuracy of a co-expression analysis has not been quantified.
Results
Here, we used a large-sample biological data set containing 338 gene-expression measurements per gene as a reference system. From these data, we generated ensembles consisting of 10, 20 and 50 randomly selected measurements to emulate low-quality data sets, finding that the wTO measure consistently generates more robust scores than what results from simple correlation calculations. Furthermore, for the data sets consisting of only 10 and 20 samples per gene, we find that wTO serves as a better predictor of the correlation scores generated from the full data set. However, we find that using wTO as a score for network building substantially alters several topographical aspects of the resulting networks, with no conclusive evidence that the resulting structure is more accurate. Importantly, we find that the much used approach of applying a soft-threshold modifier to link weights prior to computing the wTO substantially decreases the robustness of the resulting wTO network, but increases the predictive power of wTO networks with regards to the reference correlation (soft threshold) network, particularly as the size of the data sets increases.
Conclusion
Our analysis demonstrates that, in agreement with previous assumptions, the wTO approach is capable of significantly improving the fidelity of co-expression networks, and that this effect is especially evident for cases of low-sample number gene-expression data sets.
Journal Article
Robust bacterial co-occurence community structures are independent of r- and K-selection history
2021
Selection for bacteria which are
K
-strategists instead of
r
-strategists has been shown to improve fish health and survival in aquaculture. We considered an experiment where microcosms were inoculated with natural seawater and the selection regime was switched from
K
-selection (by continuous feeding) to
r
-selection (by pulse feeding) and vice versa. We found the networks of significant co-occurrences to contain clusters of taxonomically related bacteria having positive associations. Comparing this with the time dynamics, we found that the clusters most likely were results of similar niche preferences of the involved bacteria. In particular, the distinction between
r
- or
K
-strategists was evident. Each selection regime seemed to give rise to a specific pattern, to which the community converges regardless of its prehistory. Furthermore, the results proved robust to parameter choices in the analysis, such as the filtering threshold, level of random noise, replacing absolute abundances with relative abundances, and the choice of similarity measure. Even though our data and approaches cannot directly predict ecological interactions, our approach provides insights on how the selection regime affects the composition of the microbial community, providing a basis for aquaculture experiments targeted at eliminating opportunistic fish pathogens.
Journal Article
ModelExplorer - software for visual inspection and inconsistency correction of genome-scale metabolic reconstructions
by
Martyushenko, Nikolay
,
Almaas, Eivind
in
Algorithms
,
Bioinformatics
,
Biomedical and Life Sciences
2019
Background
Genome-scale metabolic network reconstructions are low level chemical representations of biological organisms. These models allow the system-level investigation of metabolic phenotypes using a variety of computational approaches. The link between a metabolic network model and an organisms’ higher-level behaviour is usually found using a constraint-based analysis approach, such as FBA (Flux Balance Analysis). However, the process of model reconstruction rarely proceeds without error. Often, considerable parts of a model cannot carry flux under any condition. This is termed model inconsistency and is caused by faulty topology and/or stoichiometry of the underlying reconstructed network. While there exist several automated gap-filling tools that may solve some of the inconsistencies, much of the work still needs to be carried out manually. The common “linear list” format of writing biochemical reactions makes it difficult to intuit what is at the root of the inconsistent behaviour. Unfortunately, we have frequently observed that model builders do not correct their models past the abilities of automated tools, leaving many widely used models significantly inconsistent.
Results
We have developed the software
ModelExplorer
, which main purpose is to fill this gap by providing an intuitive and visual framework that allows the user to explore and correct inconsistencies in genome-scale metabolic models. The software will automatically visualize metabolic networks as graphs with distinct separation and delineation of cellular compartments. ModelExplorer highlights reactions and species that are unable to carry flux (blocked), with several different consistency checking modes available. Our software also allows the automatic identification of neighbours and production pathways of any species or reaction. Additionally, the user may focus on any chosen inconsistent part of the model on its own. This facilitates a rapid and visual identification of reactions and species responsible for model inconsistencies. Finally, ModelExplorer lets the user freely edit, add or delete model elements, allowing straight-forward correction of discovered issues.
Conclusion
Overall, ModelExplorer is currently the fastest real-time metabolic network visualization program available. It implements several consistency checking algorithms, which in combination with its set of tracking tools, gives an efficient and systematic model-correction process.
Journal Article