Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Almeida, Aitor"
Sort by:
Predicting Human Behaviour with Recurrent Neural Networks
2018
As the average age of the urban population increases, cities must adapt to improve the quality of life of their citizens. The City4Age H2020 project is working on the early detection of the risks related to mild cognitive impairment and frailty and on providing meaningful interventions that prevent these risks. As part of the risk detection process, we have developed a multilevel conceptual model that describes the user behaviour using actions, activities, and intra- and inter-activity behaviour. Using this conceptual model, we have created a deep learning architecture based on long short-term memory networks (LSTMs) that models the inter-activity behaviour. The presented architecture offers a probabilistic model that allows us to predict the user’s next actions and to identify anomalous user behaviours.
Journal Article
Behavior Modeling for a Beacon-Based Indoor Location System
by
Emaldi, Mikel
,
Sergi, Ilaria
,
Montanaro, Teodoro
in
Algorithms
,
ambient assisted living
,
Energy
2021
In this work we performed a comparison between two different approaches to track a person in indoor environments using a locating system based on BLE technology with a smartphone and a smartwatch as monitoring devices. To do so, we provide the system architecture we designed and describe how the different elements of the proposed system interact with each other. Moreover, we have evaluated the system’s performance by computing the mean percentage error in the detection of the indoor position. Finally, we present a novel location prediction system based on neural embeddings, and a soft-attention mechanism, which is able to predict user’s next location with 67% accuracy.
Journal Article
Artificial Intelligence in Business-to-Customer Fashion Retail: A Literature Review
by
Goti, Aitor
,
Querejeta-Lomas, Leire
,
López-de-Ipiña, Diego
in
Artificial intelligence
,
Banks (Finance)
,
business-to-customer
2023
Many industries, including healthcare, banking, the auto industry, education, and retail, have already undergone significant changes because of artificial intelligence (AI). Business-to-Customer (B2C) e-commerce has considerably increased the use of AI in recent years. The purpose of this research is to examine the significance and impact of AI in the realm of fashion e-commerce. To that end, a systematic review of the literature is carried out, in which data from the Web Of Science and Scopus databases were used to analyze 219 publications on the subject. The articles were first categorized using AI techniques. In the realm of fashion e-commerce, they were divided into two categories. These categorizations allowed for the identification of research gaps in the use of AI. These gaps offer potential and possibilities for further research.
Journal Article
A Comparative Analysis of Human Behavior Prediction Approaches in Intelligent Environments
2022
Behavior modeling has multiple applications in the intelligent environment domain. It has been used in different tasks, such as the stratification of different pathologies, prediction of the user actions and activities, or modeling the energy usage. Specifically, behavior prediction can be used to forecast the future evolution of the users and to identify those behaviors that deviate from the expected conduct. In this paper, we propose the use of embeddings to represent the user actions, and study and compare several behavior prediction approaches. We test multiple model (LSTM, CNNs, GCNs, and transformers) architectures to ascertain the best approach to using embeddings for behavior modeling and also evaluate multiple embedding retrofitting approaches. To do so, we use the Kasteren dataset for intelligent environments, which is one of the most widely used datasets in the areas of activity recognition and behavior modeling.
Journal Article
PADL: A Modeling and Deployment Language for Advanced Analytical Services
by
Díaz-de-Arcaya, Josu
,
Miñón, Raúl
,
Del Ser, Javier
in
Algorithms
,
analytical pipelines
,
Artificial intelligence
2020
In the smart city context, Big Data analytics plays an important role in processing the data collected through IoT devices. The analysis of the information gathered by sensors favors the generation of specific services and systems that not only improve the quality of life of the citizens, but also optimize the city resources. However, the difficulties of implementing this entire process in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their geographical distribution, and the complexity of the necessary IT infrastructures. For this reason, the main contribution of this paper is the PADL description language, which has been specifically tailored to assist in the definition and operationalization phases of the machine learning life cycle. It provides annotations that serve as an abstraction layer from the underlying infrastructure and technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition, we provide tools that facilitate its adoption in production environments. Finally, we showcase the usefulness of the language by showing the definition of PADL-compliant analytical pipelines over two uses cases in a smart city context (flood control and waste management), demonstrating that its adoption is simple and beneficial for the definition of information and process flows in such environments.
Journal Article
Assessing Ambiguity of Context Data in Intelligent Environments: Towards a More Reliable Context Managing System
2012
Modeling and managing correctly the user context in Smart Environments is important to achieve robust and reliable systems. When modeling reality we must take into account its ambiguous nature. Considering the uncertainty and vagueness in context data information it is possible to attain a more precise picture of the environment, thus leading to a more accurate inference process. To achieve these goals we present an ontology that models the ambiguity in intelligent environments and a data fusion and inference process that takes advantage of that extra information to provide better results. Our system can assess the certainty of the captured measurements, discarding the unreliable ones and combining the rest into a unified vision of the current user context. It also models the vagueness of the system, combining it with the uncertainty to obtain a richer inference process.
Journal Article
Combining Users’ Activity Survey and Simulators to Evaluate Human Activity Recognition Systems
by
López-de-Ipiña, Diego
,
Chen, Liming
,
Almeida, Aitor
in
Activities of daily living
,
activity recognition
,
activity survey
2015
Evaluating human activity recognition systems usually implies following expensive and time-consuming methodologies, where experiments with humans are run with the consequent ethical and legal issues. We propose a novel evaluation methodology to overcome the enumerated problems, which is based on surveys for users and a synthetic dataset generator tool. Surveys allow capturing how different users perform activities of daily living, while the synthetic dataset generator is used to create properly labelled activity datasets modelled with the information extracted from surveys. Important aspects, such as sensor noise, varying time lapses and user erratic behaviour, can also be simulated using the tool. The proposed methodology is shown to have very important advantages that allow researchers to carry out their work more efficiently. To evaluate the approach, a synthetic dataset generated following the proposed methodology is compared to a real dataset computing the similarity between sensor occurrence frequencies. It is concluded that the similarity between both datasets is more than significant.
Journal Article
A Distributed Reasoning Engine Ecosystem for Semantic Context-Management in Smart Environments
2012
To be able to react adequately a smart environment must be aware of the context and its changes. Modeling the context allows applications to better understand it and to adapt to its changes. In order to do this an appropriate formal representation method is needed. Ontologies have proven themselves to be one of the best tools to do it. Semantic inference provides a powerful framework to reason over the context data. But there are some problems with this approach. The inference over semantic context information can be cumbersome when working with a large amount of data. This situation has become more common in modern smart environments where there are a lot sensors and devices available. In order to tackle this problem we have developed a mechanism to distribute the context reasoning problem into smaller parts in order to reduce the inference time. In this paper we describe a distributed peer-to-peer agent architecture of context consumers and context providers. We explain how this inference sharing process works, partitioning the context information according to the interests of the agents, location and a certainty factor. We also discuss the system architecture, analyzing the negotiation process between the agents. Finally we compare the distributed reasoning with the centralized one, analyzing in which situations is more suitable each approach.
Journal Article
Regularized online tensor factorization for sparse knowledge graph embeddings
by
Zulaika, Unai
,
López-de-Ipiña, Diego
,
Almeida, Aitor
in
Algorithms
,
Artificial Intelligence
,
Computational Biology/Bioinformatics
2023
Knowledge Graphs represent real-world facts and are used in several applications; however, they are often incomplete and have many missing facts. Link prediction is the task of completing these missing facts from existing ones. Embedding models based on Tensor Factorization attain state-of-the-art results in link prediction. Nevertheless, the embeddings they produce can not be easily interpreted. Inspired by previous work on word embeddings, we propose inducing sparsity in the bilinear tensor factorization model, RESCAL, to build interpretable Knowledge Graph embeddings. To overcome the difficulties that stochastic gradient descent has when producing sparse solutions, we add
l
1
regularization to the learning objective by using the generalized Regularized Dual Averaging online optimization algorithm. The proposed method substantially improves the interpretability of the learned embeddings while maintaining competitive performance in the standard metrics.
Journal Article
An IoT-Aware Architecture for Collecting and Managing Data Related to Elderly Behavior
by
Fiore, Alessandro
,
Mainetti, Luca
,
Almeida, Aitor
in
Application programming interface
,
Architecture
,
Behavior
2017
The world population will be made up of a growing number of elderly people in the near future. Aged people are characterized by some physical and cognitive diseases, like mild cognitive impairment (MCI) and frailty, that, if not timely diagnosed, could turn into more severe diseases, like Alzheimer disease, thus implying high costs for treatments and cares. Information and Communication Technologies (ICTs) enabling the Internet of Things (IoT) can be adopted to create frameworks for monitoring elderly behavior which, alongside normal clinical procedures, can help geriatricians to early detect behavioral changes related to such pathologies and to provide customized interventions. As part of the City4Age project, this work describes a novel approach for collecting and managing data about elderly behavior during their normal activities. The data capturing layer is an unobtrusive and low-cost sensing infrastructure abstracting the heterogeneity of physical devices, while the data management layer easily manages the huge quantity of sensed data, giving them semantic meaning and fostering data shareability. This work provides a functional validation of the proposed architecture and introduces how the data it manages can be used by the whole City4Age platform to early identify risks related to MCI/frailty and promptly intervene.
Journal Article