Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
21 result(s) for "Alongi, D. M. (Daniel M.)"
Sort by:
Impact of Global Change on Nutrient Dynamics in Mangrove Forests
The cycling of essential nutrients is central to mangrove productivity. A mass balance shows that mangroves rely on soil ammonification, nitrification, and dissimilatory reduction to ammonium for available nitrogen. Mangroves are often nutrient limited and show tight coupling between nutrient availability and tree photosynthesis. This relationship and, thus, forest productivity can be disrupted by various disturbances such as deforestation, changes in hydrology due to impoundments, land-use change, increasing frequency and intensity of storms, increasing temperatures, increasing atmospheric CO2 concentrations, and a rising sea-level. Deforestation and hydrological changes are the most devastating to soil nutrient-plant relations and mangrove productivity. Land-use changes can result in positive and negative impacts on mangroves and can also results in increasing frequency of storms and intensity of storms. Increasing temperatures and atmospheric CO2 levels have an initially enhanced effect on mangroves and microbial transformation rates of nitrogen and phosphorus. The effects of rising seas are complex and depend on the local rate of sea-level rise, the soil accretion rate, the subsidence or uplift rate, and the tidal position. If mangroves cannot keep pace with a sea-level rise, seaward mangroves will likely drown but landward mangroves will expand and show enhanced growth and more rapid nutrient cycling if space permits.
The Impact of Climate Change on Mangrove Forests
Mangrove forests have survived a number of catastrophic climate events since first appearing along the shores of the Tethys Sea during the late Cretaceous-Early Tertiary. The existence of mangrove peat deposits worldwide attests to past episodes of local and regional extinction, primarily in response to abrupt, rapid rises in sea level. Occupying a harsh margin between land and sea, most mangrove plants and associated organisms are predisposed to be either resilient or resistant to most environmental change. Based on the most recent Intergovernmental Panel on Climate Change (IPCC) forecasts, mangrove forests along arid coasts, in subsiding river deltas, and on many islands are predicted to decline in area, structural complexity, and/or in functionality, but mangroves will continue to expand polewards. It is highly likely that they will survive into the foreseeable future as sea level, global temperatures, and atmospheric CO 2 concentrations continue to rise.
Carbon Cycling in the World’s Mangrove Ecosystems Revisited: Significance of Non-Steady State Diagenesis and Subsurface Linkages between the Forest Floor and the Coastal Ocean
Carbon cycling within the deep mangrove forest floor is unique compared to other marine ecosystems with organic carbon input, mineralization, burial, and advective and groundwater export pathways being in non-steady-state, often oscillating in synchrony with tides, plant uptake, and release/uptake via roots and other edaphic factors in a highly dynamic and harsh environment. Rates of soil organic carbon (CORG) mineralization and belowground CORG stocks are high, with rapid diagenesis throughout the deep (>1 m) soil horizon. Pocketed with cracks, fissures, extensive roots, burrows, tubes, and drainage channels through which tidal waters percolate and drain, the forest floor sustains non-steady-state diagenesis of the soil CORG, in which decomposition processes at the soil surface are distinct from those in deeper soils. Aerobic respiration occurs within the upper 2 mm of the soil surface and within biogenic structures. On average, carbon respiration across the surface soil-air/water interface (104 mmol C m−2 d−1) equates to only 25% of the total carbon mineralized within the entire soil horizon, as nearly all respired carbon (569 mmol C m−2 d−1) is released in a dissolved form via advective porewater exchange and/or lateral transport and subsurface tidal pumping to adjacent tidal waters. A carbon budget for the world’s mangrove ecosystems indicates that subsurface respiration is the second-largest respiratory flux after canopy respiration. Dissolved carbon release is sufficient to oversaturate water-column pCO2, causing tropical coastal waters to be a source of CO2 to the atmosphere. Mangrove dissolved inorganic carbon (DIC) discharge contributes nearly 60% of DIC and 27% of dissolved organic carbon (DOC) discharge from the world’s low latitude rivers to the tropical coastal ocean. Mangroves inhabit only 0.3% of the global coastal ocean area but contribute 55% of air-sea exchange, 14% of CORG burial, 28% of DIC export, and 13% of DOC + particulate organic matter (POC) export from the world’s coastal wetlands and estuaries to the atmosphere and global coastal ocean.
Present state and future of the world's mangrove forests
Mangroves, the only woody halophytes living at the confluence of land and sea, have been heavily used traditionally for food, timber, fuel and medicine, and presently occupy about 181 000 km2 of tropical and subtropical coastline. Over the past 50 years, approximately one-third of the world's mangrove forests have been lost, but most data show very variable loss rates and there is considerable margin of error in most estimates. Mangroves are a valuable ecological and economic resource, being important nursery grounds and breeding sites for birds, fish, crustaceans, shellfish, reptiles and mammals; a renewable source of wood; accumulation sites for sediment, contaminants, carbon and nutrients; and offer protection against coastal erosion. The destruction of mangroves is usually positively related to human population density. Major reasons for destruction are urban development, aquaculture, mining and overexploitation for timber, fish, crustaceans and shellfish. Over the next 25 years, unrestricted clear felling, aquaculture, and overexploitation of fisheries will be the greatest threats, with lesser problems being alteration of hydrology, pollution and global warming. Loss of biodiversity is, and will continue to be, a severe problem as even pristine mangroves are species-poor compared with other tropical ecosystems. The future is not entirely bleak. The number of rehabilitation and restoration projects is increasing worldwide with some countries showing increases in mangrove area. The intensity of coastal aquaculture appears to have levelled off in some parts of the world. Some commercial projects and economic models indicate that mangroves can be used as a sustainable resource, especially for wood. The brightest note is that the rate of population growth is projected to slow during the next 50 years, with a gradual decline thereafter to the end of the century. Mangrove forests will continue to be exploited at current rates to 2025, unless they are seen as a valuable resource to be managed on a sustainable basis. After 2025, the future of mangroves will depend on technological and ecological advances in multi-species silviculture, genetics, and forestry modelling, but the greatest hope for their future is for a reduction in human population growth.
Massive turnover rates of fine root detrital carbon in tropical Australian mangroves
Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m⁻²), low-intertidal Rhizophora (16.3 kg m⁻²) and high-intertidal Ceriops (mean 8.9 kg m⁻²), and were some of the highest on record. The first-order decay coefficients (day⁻¹) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m⁻² day⁻¹), low Rhizophora (8.4 g C m⁻² day⁻¹) and high Ceriops (2.5 g C m⁻² day⁻¹). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50–200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates.
Dissolved iron supply limits early growth of estuarine mangroves
Three mesocosm experiments were performed in an outdoor facility to quantify the responses of five mangrove species grown from seedling to sapling stage to increasing rates of dissolved iron supply. Stem extension and biomass of mangroves were measured in the first two experiments, and in the third experiment, rates of microbial iron reduction were measured in relation to stem extension of two mangrove species. In all experiments, mangrove growth was enhanced by increasing iron supply, although some species showed iron toxicity at the higher supply rates. In the first two experiments, stem extension rates of Rhizophora apiculata , Bruguiera gymnorrhiza , and Xylocarpus moluccensis best fit Gaussian curves with maximal growth at supply rates of 50-60 mmol Fe·m −2 ·d −1 , whereas growth of Avicennia marina and Ceriops tagal increased to the highest rate (100 mmol Fe·m −2 ·d −1 ) of iron supply. Changes in leaf chlorophyll concentrations and iron content of roots mirrored the growth responses. In the third experiment, rates of microbial iron reduction were greater with R. apiculata and A. marina than in controls without plants; for both species, there was a positive relationship between stem extension and iron reduction. The rates of iron reduction and rates of iron supplied to the plants were well within the range of interstitial iron concentrations and rates of iron reduction found in the natural mangrove soils from which the seedlings were obtained. The responses of these species show that mangroves growing from seedling to sapling stage have a strong nutritional requirement for iron, and that there is a close relationship between plant roots and the activities of iron-reducing bacteria. These results suggest that mangrove growth may be limited in some natural forests by the rate at which iron is solubilized by iron-reducing bacteria. Such biogeochemical conditions have significant implications for successful recruitment, establishment, and early growth of mangroves.
Uncoupled surface and below-ground soil respiration in mangroves: implications for estimates of dissolved inorganic carbon export
Potential disparities between rates of surface and below-ground respiration were examined in seven mangrove forests of different topographic height in Timor Leste. Differences in surface respiration between air-exposed and inundated soils were inconsistent, but surface respiration rates increased, with tidal elevation. Net primary production (NPP) on air-exposed soils declined with increasing forest cover indicating light limitation beneath the canopy. NPP and respiration were linearly related under both air-exposed and inundated conditions. Rates of DIC release from the soil surface varied among forests, correlating only with soil carbon (TOC) and nitrogen (TN) and their stoichiometric ratios. Sulfate reduction was detected to maximum depth of unconsolidated soil, correlating only with TOC and TN content at discrete depth intervals. DIC concentrations in drainage channels were equivalent to porewater concentrations. The rate of carbon mineralized by sulfate reducers (SRC) was equivalent to rates of total carbon oxidation (TCO) measured at the soil surface in forests at tidal heights ≤0.5 m above mean sea-level (MSL). However, SRC was increasingly greater than TCO in forests residing from 1.0 up to 2.5 m above MSL. Most carbon mineralized in subsurface deposits appears to seep out of the forest via groundwater. Rates of surface respiration therefore underestimate rates of total benthic carbon mineralization in forests at topographic heights ≥0.5 m above MSL, suggesting that the amount of respiratory carbon exported from many mangrove forests has also been underestimated.
Denitrification, anammox and nitrate reduction in sediments of the southern Great Barrier Reef lagoon
We provide the first reported estimates of anammox activity in tropical continental shelf sediments (southern section of the Great Barrier Reef lagoon; GBRL). The measured contribution of anammox to total N₂ production was up to 70% but restricted to only 1 of the 4 (2 inshore and 2 offshore) sites assayed. Sediment characteristics (contents of total organic carbon [TOC] and manganese [Mn], C:N ratio) at this site appeared to favour anammox activity and the estimated maximum rate was 4.9 μmol m−2 h−1. Anammox bacteria may be a significant contributor to N₂ production along the coastal zone of the GBRL. The availability of labile (low C:N) TOC seemed to drive denitrification to completion in the offshore sediments. However, rates of NO₃⁻ reduction to NH₄⁺ at the offshore sites were comparable to or higher than denitrification rates. It was unclear whether dissimilatory or assimilatory processes were responsible for the observed reduction of NO₃⁻ to NH₄⁺ at the offshore sites. At the 2 inshore sites, NO₃⁻ reduction to NH₄⁺ was a larger sink for NO₃⁻ than denitrification. Anammox does exist in the tropical continental shelf sediments of the GBRL and should be studied further to determine its role in larger scale N cycling. The roles of assimilatory and dissimilatory nitrate reduction to ammonium also need to be assessed within the GBRL.
Mangrove community structure and regeneration potential on a rapidly expanding, river delta in Java
Key message Mangroves in rapidly expanding Southeast Asian river deltas form floristically simple zones dominated by a few highly regenerative species adaptable or tolerant to rapid sedimentation and extensive river flooding. The size class distribution, community composition and spatial structure of five representative mangrove forests in the rapidly expanding Cimanuk river delta on Java were determined. These deltaic forests are species-poor (eight true mangrove species) and spatially segregated into three distinct floristic zones: (1) a fringing, low intertidal zone co-dominated by Avicennia marina and A. officinalis , with less abundant Bruguiera parviflora , Rhizophora apiculata , and R. mucronata ; (2) a zone transitional between the low and mid intertidal in which Avicennia and Rhizophora spp. co-dominate; and (3) a mid intertidal zone dominated by R. mucronata and R. apiculata . Numerically dominated by seedlings (52,500–73,500 seedlings ha −1 ) and saplings (5,268–5,660 saplings ha −1 ), all five forests are relatively young and actively regenerating. Positive correlations of tree stem diameter and tree height with soil organic matter and P concentrations, salinity, the soil C/N ratio, pH, and silt/clay composition highlight the importance of soil factors in sustaining forest growth. The low diversity and relative structural simplicity of these rapidly growing and regenerating forests may be attributed to adaptation or tolerance to flooding and the rapid sedimentation and seaward expansion of the delta.