Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Alsamin, Bazel"
Sort by:
Appropriate Application Methods for Salicylic Acid and Plant Nutrients Combinations to Promote Morpho-Physiological Traits, Production, and Water Use Efficiency of Wheat under Normal and Deficit Irrigation in an Arid Climate
Freshwater shortage and inadequate nutrient management are the two major challenges for sustainable wheat production in arid agro-ecosystems. Relatively little is known about the positive roles of the application methods for the combination of salicylic acid (SA) and plant nutrients in sustaining wheat production under arid climatic conditions. A two-year field study was undertaken to assess the impact of seven treatments for the integrated application of SA, macronutrients, and micronutrients on the morpho-physiological traits, yield, and irrigation water use efficiency (IWUE) of wheat subjected to full (FL) and limited (LM) irrigation regimes. The results showed that the LM regime caused a significant reduction in different plant growth traits, relative water content, chlorophyll pigments, yield components, and yield, while a significant increase was observed in IWUE. The sole application of SA or co-application with micronutrients through soil did not significantly affect the studied traits under the FL regime, while they achieved some improvement over untreated plants under the LM regime. Based on the different multivariate analyses, the soil and foliar applications for the combinations of SA and micronutrients, as well as a foliar application for the combinations of SA, macronutrients, and micronutrients were identified as an efficient option for mitigating the negative impacts of water deficit stress and enhancing the growth and production of wheat under normal conditions. In conclusion, the results obtained herein indicated that the co-application of SA and macro- and micronutrients is an effective option to greatly enhance and improve the growth and production of wheat crops in water-scarce countries of arid regions, such as Saudi Arabia, while an appropriate application method for this combination was required for positive effects.
Improving Morpho-Physiological Indicators, Yield, and Water Productivity of Wheat through an Optimal Combination of Mulching and Planting Patterns in Arid Farming Systems
Mulching practices (M), which conserve soil water and improve water productivity (WP), are receiving increasing attention worldwide However, so far, little attention has been given to investigating the effects of the integrations of mulching and planting patterns (IMPPs) on spring wheat performance under arid regions conditions. A two-year field study was conducted to compare the effects of eight IMPPs on growth parameters at 80 and 100 days after sowing (DAS), growth indicators, physiological attributes, grain yield (GY), and WP of wheat under adequate (1.00 ET) and limited (0.50 ET) irrigation conditions. The IMPPs included three planting patterns (PPs), that is, flat (F), raised-bed (RB), and ridge–furrow (RF), in combination with three M, that is, no-mulch (NM), plastic film mulch (PFM), and crop residues mulch (CRM). The results indicated that PPs mulched with PFM and CRM significantly increased growth indicators, different growth parameters, physiological attributes, GY, and WP by 6.9–39.3%, 8.2–29.2%, 5.2–24.9%, 9.9, and 11.2%, respectively, compared to non-mulched PPs. The F and RB patterns mulched with CRM were more effective in improving growth parameters at 100 DAS (2.7–13.6%), physiological attributes (0.2–20.0%), GY, and WP (9.7%) than were the F and RB patterns mulched with PFM under 1.00 ET, while the opposite was true under 0.50 ET conditions. Although the RFPFM failed to compete with other IMPPs under 1.00 ET, the values of different parameters in this PP were comparable to those in F and RB patterns mulched with PFM, and were 1.3–24.5% higher than those in F and RB patterns mulched with CRM under 0.50 ET conditions. Although the RFNM did not use mulch, the values of different parameters for this PP were significantly higher than those of F and RB patterns without mulch. Irrespective of irrigation treatments, the heatmap analysis based on different stress tolerance indices identified the different PPs mulched with PFM as the best IMPPs for the optimal performance of wheat under arid conditions, followed by PPs mulched with CRM. The different growth indicators exhibited second-order and strong relationships with GY (R2 = 0.78 to 0.85) and moderate relationships with WP (R2 = 0.59 to 0.79). Collectively, we concluded that using PPs mulched with CRM is the recommended practice for achieving good performance and production for wheat under adequate irrigation, whereas using PPS mulched with PFM is recommended as a viable management option for sustainable production of wheat and improving WP under limited irrigation in arid countries.
Integrating Application Methods and Concentrations of Salicylic Acid as an Avenue to Enhance Growth, Production, and Water Use Efficiency of Wheat under Full and Deficit Irrigation in Arid Countries
As water deficit in arid countries has already become the norm rather than the exception, water conservation in crop production processes has become very critical. Therefore, it is urgent to develop feasible strategies to achieve this goal. Exogenous application of salicylic acid (SA) has been proposed as one of the effective and economical strategies for mitigating water deficit in plants. However, the recommendations concerning the proper application methods (AMs) and the optimal concentrations (Cons) of SA under field conditions seem contradictory. Here, a two-year field study was conducted to compare the effects of twelve combinations of AMs and Cons on the vegetative growth, physiological parameters, yield, and irrigation water use efficiency (IWUE) of wheat under full (FL) and limited (LM) irrigation regimes. These combinations included seed soaking in purified water (S0), 0.5 mM SA (S1), and 1.0 mM SA (S2); foliar spray of SA at concentrations of 1.0 mM (F1), 2.0 mM (F2), and 3.0 mM (F3); and combinations of S1 and S2 with F1 (S1F1 and S2F1), F2 (S1F2 and S2F2), and F3 (S1F3 and S2F3). The results showed that the LM regime caused a significant reduction in all vegetative growth, physiological, and yield parameters, while it led to an increase in IWUE. The application of SA through seed soaking, foliar application, and a combination of both methods increased all of the studied parameters in all the evaluated times, resulting in higher values for all parameters than the treatment without SA (S0). The multivariate analyses, including principal component analysis and heatmapping, identified the foliar application method with 1–3 mM SA alone or in combination with seed soaking with 0.5 mM SA as the best treatments for the optimal performance of wheat under both irrigation regimes. Overall, our results indicated that exogenous application of SA has the potential to greatly improve growth, yield, and IWUE under limited water application, while optimal coupling combinations of AMs and Cons were required for positive effects in field conditions.
Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions
Ensuring food security with severe shortages of freshwater and drastic changes in climatic conditions in arid countries requires the urgent development of feasible and user-friendly strategies. Relatively little is known regarding the impacts of the co-application (Co-A) of salicylic acid (SA), macronutrients (Mac), and micronutrients (Mic) through foliar (F) and soil (S) application strategies on field crops under arid and semiarid climatic conditions. A two-year field experiment was designed to compare the impacts of seven (Co-A) treatments of this strategy, including a control, FSA+Mic, FSA+Mac, SSA + FMic, SSA + FSA+Mic, SSA+Mic + FSA, and SSA+Mic + FMac+Mic on the agronomic performance, physiological attributes, and water productivity (WP) of wheat under normal (NI) and limited (LMI) irrigation conditions. The results reveal that the LMI treatment caused a significant reduction in various traits related to the growth (plant height, tiller and green leaf numbers, leaf area index, and shoot dry weight), physiology (relative water content and chlorophyll pigments), and yield components (spike length, grain weight and grain numbers per spike, thousand-grain weight, and harvest index) of wheat by 11.4–47.8%, 21.8–39.8%, and 16.4–42.3%, respectively, while WP increased by 13.3% compared to the NI treatment. The different Co-A treatments have shown a 0.2–23.7%, 3.6–26.7%, 2.3–21.6%, and 12.2–25.0% increase in various traits related to growth, physiology, yield, and WP, respectively, in comparison to the control treatment. The SSA+ FSA+Mic was determined as the best treatment that achieved the best results for all studied traits under both irrigation conditions, followed by FSA+Mic and SSA+Mic + FSA under LMI in addition to FSA+Mac under NI conditions. It can be concluded that the Co-A of essential plant nutrients along with SA accomplished a feasible, profitable, and easy-to-use strategy to attenuate the negative impacts of deficit irrigation stress, along with the further improvement in the growth and production of wheat under NI conditions.
Combining Planting Patterns with Mulching Bolsters the Soil Water Content, Growth, Yield, and Water Use Efficiency of Spring Wheat under Limited Water Supply in Arid Regions
Innovations in water-saving cultivation strategies are urgently needed to achieve high yield and elevated water use efficiency (WUE) simultaneously in arid regions with limited water resources. Here, we conducted a two-year field study to compare the impacts of eight combinations of planting patterns (PPs) and mulching on the soil water content (SWC) in the top 60 cm soil layer, the growth, the yield, and the WUE of wheat under two irrigation rates (1.00 and 0.50 ET). These combinations included three conventional flat planting (CF) patterns, including CF without mulch (CFNM), with plastic film (CFPM), and with wheat straw mulch (CFSM); three raised-bed planting (RB) patterns, including RB without mulch (RBNM), with plastic film (RBPM), and wheat straw (RBSM) mulch; and two ridge–furrow planting (RF) patterns, including RF without mulch (RFNM) and with plastic film mulch (RFPM). The results showed that the tested treatments affected the SWC at different depths under both irrigation rates. Compared with the two non-mulched treatments under 0.50 ET, the SWC of the three PPs with plastic film and the two PPs with wheat straw mulching were significantly higher before irrigation by 14.4–22.0% and 6.9–17.2% at 0–20 cm soil depth, 16.4–29.0% and 6.6–14.9% at 20–40 cm soil depth, and 3.3–34.8% and 3.4–14.5% at 40–60 cm soil depth, respectively. All measured wheat parameters, except harvest index, were significantly affected by the interaction between irrigation rate and PPs. The highest values for plant dry weight (PDW), yield components, grain yield (GY), and WUE under 1.00 ET were obtained in the two PPs with wheat straw mulch, while the three PPs with plastic film showed the highest values of these parameters under 0.50 ET. The yield response factor (Ky) based on PDW was acceptable for all PPs mulched with plastic film and wheat straw as well as for RFNM, while Ky based on GY was acceptable only for the PPs mulched with plastic film and for RFNM, as the Ky values of these PPs were less than 1 under 0.50 ET. The SWC at different depths exhibited quadratic and nonsignificant relationships with all parameters under 1.00 ET, while these relationships were linear and strong under 0.50 ET, with a few exceptions. Overall, we conclude that combining any PPs with plastic film mulching could be used as a feasible and effective strategy for obtaining high wheat yield and WUE in the irrigated and arid agroecosystem.
Integrating Tillage and Mulching Practices as an Avenue to Promote Soil Water Storage, Growth, Production, and Water Productivity of Wheat under Deficit Irrigation in Arid Countries
Ensuring food security with limited water resources in arid countries requires urgent development of innovative water-saving strategies. This study aimed to investigate the effects of various tillage and mulching practices on soil water storage (SWS), growth, production, irrigation water use efficiency (IWUE), and water productivity (WP) of wheat under full (FL) and limited (LM) irrigation regimes in a typical arid country. The tillage practices comprised the conventional tillage (CT) and reduced tillage (RT), each with five mulching treatments (MT), including non-mulched (NM), plastic film mulch (PFM), wheat straw mulch (WSM), palm residues mulch (PRM), and a mixture of wheat straw and palm residues at 50/50 ratio (MM). Results showed higher SWS at different measured time points in CT than RT at 20–40 cm, 40–60 cm, and 0–60 cm soil depth under FL regime, and at 40–60 cm under LM regime, while the opposite was observed at 0–20 cm and 20–40 cm soil depth under LM regime. SWS at different soil depths under MT, in most cases, followed the order of PFM > PRM ≈ MM > WSM > NM under FL, and PFM ≈ PRM > MM > WSM > NM under LM regimes. No significant differences were observed for traits related to growth between CT and RT, but RT increased the traits related to yield, IWUE, and WP by 5.9–11.6% than did CT. PFM and PRM or PRM and MM showed the highest values for traits related to growth or yield, IWUE, and WP, respectively. No significant differences in all traits between CT and RT under the FL regime were observed, however, RT increased all traits by 8.0–18.8% than did CT under the LM regime. The yield response factor (Ky) based on plant dry weight (KyPDW) and grain yield (KyGY) under RT was acceptable for four MT, while KyGY under CT was acceptable only for PRM, as the Ky values in these treatments were <1 under the LM regime. The interrelationships of plant dry weight (PDW), grain yield (GY), IWUE, and WP with evapotranspiration (ET), and of WP and IWUE with PDW and GY were best described by a second-order polynomial. SWS measured before irrigation exhibited strong linear relationships with PDW and GY (R2 range 0.57 to 0.92), while they exhibited a second order polynomial and moderate correlation with IWUE and WP (R2 range 0.29 to 0.54). Overall, combining RT with plant residue mulching, particularly using the readily available palm residues in sufficient amount is a feasible and sustainable water-saving strategy for enhancing wheat yield and WP in irrigated arid countries, such as Saudi Arabia.