Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Alsowayeh, Noorah"
Sort by:
Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium Priestia filamentosa Strain AZC66 Obtained from Zygophyllum coccineum Rhizosphere
by
Alsowayeh, Noorah
,
Khalifa, Ashraf
in
1-aminocyclopropane-1-carboxylate deaminase
,
Acetic acid
,
Acid production
2023
This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66’s indole acetic acid production. AZC66’s inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 μg mL−1), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg−1 h−1). Cowpea’s root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.
Journal Article
Designing a novel chimeric multi-epitope vaccine against Burkholderia pseudomallei, a causative agent of melioidosis
2022
Burkholderia pseudomallei
, a gram-negative soil-dwelling bacterium, is primarily considered a causative agent of melioidosis infection in both animals and humans. Despite the severity of the disease, there is currently no licensed vaccine on the market. The development of an effective vaccine against
B. pseudomallei
could help prevent the spread of infection. The purpose of this study was to develop a multi-epitope-based vaccine against
B. pseudomallei
using advanced bacterial pan-genome analysis. A total of four proteins were prioritized for epitope prediction by using multiple subtractive proteomics filters. Following that, a multi-epitopes based chimeric vaccine construct was modeled and joined with an adjuvant to improve the potency of the designed vaccine construct. The structure of the construct was predicted and analyzed for flexibility. A population coverage analysis was performed to evaluate the broad-spectrum applicability of
B. pseudomallei
. The computed combined world population coverage was 99.74%. Molecular docking analysis was applied further to evaluate the binding efficacy of the designed vaccine construct with the human toll-like receptors-5 (TLR-5). Furthermore, the dynamic behavior and stability of the docked complexes were investigated using molecular dynamics simulation, and the binding free energy determined for Vaccine-TLR-5 was delta total −168.3588. The docking result revealed that the vaccine construct may elicit a suitable immunological response within the host body. Hence, we believe that the designed
in-silico
vaccine could be helpful for experimentalists in the formulation of a highly effective vaccine for
B. pseudomallei
.
Journal Article
Combating Cariogenic Streptococcus mutans Biofilm Formation and Disruption with Coumaric Acid on Dentin Surface
2024
Streptococcus mutans, the primary cause of dental caries, relies on its ability to create and sustain a biofilm (dental plaque) for survival and pathogenicity in the oral cavity. This study was focused on the antimicrobial biofilm formation control and biofilm dispersal potential of Coumaric acid (CA) against Streptococcus mutans on the dentin surface. The biofilm was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay, microtiter plate assay, production of extracellular polymeric substances (EPSs), florescence microscopy (surface coverage and biomass μm2) and three-dimensional (3D) surface plots. It was observed that CA at 0.01 mg/mL reduced bacterial growth by 5.51%, whereases at 1 mg/mL, a significant (p < 0.05) reduction (98.37%) was observed. However, at 1 mg/mL of CA, a 95.48% biofilm formation reduction was achieved, while a 73.45% biofilm dispersal (after 24 h. treatment) was achieved against the preformed biofilm. The MTT assay showed that at 1 mg/mL of CA, the viability of bacteria in the biofilm was markedly (p < 0.05) reduced to 73.44%. Moreover, polysaccharide (EPS) was reduced to 24.80 μg/mL and protein (EPS) to 41.47 μg/mL. ImageJ software (version 1.54 g) was used to process florescence images, and it was observed that the biofilm mass was reduced to 213 (μm2); the surface coverage was reduced to 0.079%. Furthermore, the 3D surface plots showed that the untreated biofilm was highly dense, with more fibril-like projections. Additionally, molecular docking predicted a possible interaction pattern of CA (ligand) with the receptor Competence Stimulating Peptide (UA159sp, PDB ID: 2I2J). Our findings suggest that CA has antibacterial and biofilm control efficacy against S. mutans associated with dental plaque under tested conditions.
Journal Article
Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update
by
Nayak, Pallavi
,
Albutti, Aqel
,
Mishra, Vijay
in
Adenosine
,
blood glucose level
,
Chronic illnesses
2021
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Journal Article
Immunological and Oxidative Biomarkers in Bovine Serum from Healthy, Clinical, and Sub-Clinical Mastitis Caused by Escherichia coli and Staphylococcus aureus Infection
by
Sadat, Asmaa
,
Alsowayeh, Noorah
,
Elhanafi, Driss
in
acute phase proteins
,
amyloid
,
antibiotic resistance
2023
The study aimed to investigate the mastitis’ emerging causative agents and their antimicrobial sensitivity, in addition to the hematological, biochemical indicators, oxidative biomarkers, acute phase protein (APP), and inflammatory cytokine changes in dairy farms in Gamasa, Dakahlia Governorate, Egypt. One hundred Holstein Friesian dairy cattle with clinical and subclinical mastitis were investigated and were allocated into three groups based on a thorough clinical examination. Escherichia coli and Staphylococcus aureus were found responsible for the clinical and subclinical mastitis in dairy farms, respectively. Multiple drug resistance (MDR) was detected in 100%, and 94.74% of E. coli and S. aureus isolates, respectively. Significantly low RBCs count, Hb, and PCV values were detected in mastitic cows compared with both subclinical mastitic and control groups; moreover, WBCs, lymphocytes, and neutrophil counts were significantly diminished in mastitic cows compared to the controls. Significantly higher levels of AST, LDH, total protein, and globulin were noticed in both mastitic and subclinical mastitic cows. The haptoglobin, fibrinogen, amyloid A, ceruloplasmin, TNF-α, IL-1β, and IL-6 levels were statistically increased in mastitic cows compared to the controls. Higher MDA levels and reduction of TAC and catalase were identified in all the mastitic cases compared to the controls. Overall, the findings suggested potential public health hazards due to antimicrobial resistance emergence. Meanwhile, the APP and cytokines, along with antioxidant markers can be used as early indicators of mastitis.
Journal Article
Immunoinformatics and Immunogenetics-Based Design of Immunogenic Peptides Vaccine against the Emerging Tick-Borne Encephalitis Virus (TBEV) and Its Validation through In Silico Cloning and Immune Simulation
2021
Tick-borne encephalitis virus (TBEV), belonging to the Flaviviridae family, is transmitted to humans via infected tick bites, leading to serious neurological complications and, in some cases, death. The available vaccines against the TBEV are reported to have low immunogenicity and are associated with adverse effects like swelling, redness and fever. Moreover, these vaccines are whole-organism-based, carry a risk of reactivation and potential for significant mortality. Consequently, to design a potential antigenic and non-allergenic multi-epitope subunit vaccine against the TBEV, we used an immunoinformatic approach to screen the Tick-borne virus proteome for highly antigenic CTL, HTL and B cell epitopes. The proper folding of the constructed vaccine was validated by a molecular dynamic simulation. Additionally, the molecular docking and binding free energy (−87.50 kcal/mol) further confirmed the strong binding affinity of the constructed vaccine with TLR-4. The vaccine exhibited a CAI value of 0.93 and a GC content of 49%, showing a high expression capability in E coli. Moreover, the analysis of immune simulation demonstrated robust immune responses against the injected vaccine and clearance of the antigen with time. In conclusion, our vaccine candidate shows promise for both in vitro and in vivo analyses due to its high immunogenicity, non-allergenicity and stable interaction with the human TLR-4 receptor.
Journal Article
Correction: Suleman et al. Immunoinformatics and Immunogenetics-Based Design of Immunogenic Peptides Vaccine against the Emerging Tick-Borne Encephalitis Virus (TBEV) and Its Validation through In Silico Cloning and Immune Simulation. Vaccines 2021, 9, 1210
2024
The authors would like to make the following correction to this published paper [...]
Journal Article
Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium IPriestia filamentosa/I Strain AZC66 Obtained from IZygophyllum coccineum/I Rhizosphere
2023
This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66’s indole acetic acid production. AZC66’s inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 μg mL[sup.−1] ), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg[sup.−1] h[sup.−1] ). Cowpea’s root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.
Journal Article
Combating Cariogenic IStreptococcus mutans/I Biofilm Formation and Disruption with Coumaric Acid on Dentin Surface
2024
Streptococcus mutans, the primary cause of dental caries, relies on its ability to create and sustain a biofilm (dental plaque) for survival and pathogenicity in the oral cavity. This study was focused on the antimicrobial biofilm formation control and biofilm dispersal potential of Coumaric acid (CA) against Streptococcus mutans on the dentin surface. The biofilm was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay, microtiter plate assay, production of extracellular polymeric substances (EPSs), florescence microscopy (surface coverage and biomass μm[sup.2]) and three-dimensional (3D) surface plots. It was observed that CA at 0.01 mg/mL reduced bacterial growth by 5.51%, whereases at 1 mg/mL, a significant (p < 0.05) reduction (98.37%) was observed. However, at 1 mg/mL of CA, a 95.48% biofilm formation reduction was achieved, while a 73.45% biofilm dispersal (after 24 h. treatment) was achieved against the preformed biofilm. The MTT assay showed that at 1 mg/mL of CA, the viability of bacteria in the biofilm was markedly (p < 0.05) reduced to 73.44%. Moreover, polysaccharide (EPS) was reduced to 24.80 μg/mL and protein (EPS) to 41.47 μg/mL. ImageJ software (version 1.54 g) was used to process florescence images, and it was observed that the biofilm mass was reduced to 213 (μm[sup.2]); the surface coverage was reduced to 0.079%. Furthermore, the 3D surface plots showed that the untreated biofilm was highly dense, with more fibril-like projections. Additionally, molecular docking predicted a possible interaction pattern of CA (ligand) with the receptor Competence Stimulating Peptide (UA159sp, PDB ID: 2I2J). Our findings suggest that CA has antibacterial and biofilm control efficacy against S. mutans associated with dental plaque under tested conditions.
Journal Article
Pan-Genome-Assisted Computational Design of a Multi-Epitopes-Based Vaccine Candidate against Helicobacter cinaedi
by
Ismail, Saba
,
Abbasi, Sumra Wajid
,
Raza, Rabail Zehra
in
Computational Biology
,
Cytokines
,
Epitopes, B-Lymphocyte - chemistry
2022
Helicobacter cinaedi is a Gram-negative bacterium from the family Helicobacteraceae and genus Helicobacter. The pathogen is a causative agent of gastroenteritis, cellulitis, and bacteremia. The increasing antibiotic resistance pattern of the pathogen prompts the efforts to develop a vaccine to prevent dissemination of the bacteria and stop the spread of antibiotic resistance (AR) determinants. Herein, a pan-genome analysis of the pathogen strains was performed to shed light on its core genome and its exploration for potential vaccine targets. In total, four vaccine candidates (TonB dependent receptor, flagellar hook protein FlgE, Hcp family type VI secretion system effector, flagellar motor protein MotB) were identified as promising vaccine candidates and subsequently subjected to an epitopes’ mapping phase. These vaccine candidates are part of the pathogen core genome: they are essential, localized at the pathogen surface, and are antigenic. Immunoinformatics was further applied on the selected vaccine proteins to predict potential antigenic, non-allergic, non-toxic, virulent, and DRB*0101 epitopes. The selected epitopes were then fused using linkers to structure a multi-epitopes’ vaccine construct. Molecular docking simulations were conducted to determine a designed vaccine binding stability with TLR5 innate immune receptor. Further, binding free energy by MMGB/PBSA and WaterSwap was employed to examine atomic level interaction energies. The designed vaccine also stimulated strong humoral and cellular immune responses as well as interferon and cytokines’ production. In a nutshell, the designed vaccine is promising in terms of immune responses’ stimulation and could be an ideal candidate for experimental analysis due to favorable physicochemical properties.
Journal Article