Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Alzahmi, Salem"
Sort by:
Two-Dimensional Core-Shell Structure of Cobalt-Doped@MnO2 Nanosheets Grown on Nickel Foam as a Binder-Free Battery-Type Electrode for Supercapacitor Application
Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO2 nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides a larger contacting area for MnO2. In the meantime, the excellent retentions of the hierarchical phase-based pore architecture of the cobalt-doped surface could beneficially condense the electron transportation pathways. In addition, the nickel foam (Ni foam) nanosheets provide charge-transport channels that lead to the outstanding improved electrochemical activities of cobalt-doped@MnO2. The unique cobalt-doped@MnO2 nanocomposite electrode facilitates stable electrochemical architecture, multi-active electrochemical sites, and rapid electro-transports channels; which act as a key factor in enhancing the specific capacitances, stability, and rate capacities. As a result, the cobalt-doped@MnO2 nanocomposite electrode delivered superior electrochemical activities with a specific capacitance of 337.8 F g–1 at 0.5 A g–1; this is greater than pristine MnO2 (277.9 F g–1). The results demonstrate a worthy approach for the designing of high-performance SCs by the grouping of the nanostructured dopant material and metal oxides.
Carbon Materials as a Conductive Skeleton for Supercapacitor Electrode Applications: A Review
Supercapacitors have become a popular form of energy-storage device in the current energy and environmental landscape, and their performance is heavily reliant on the electrode materials used. Carbon-based electrodes are highly desirable due to their low cost and their abundance in various forms, as well as their ability to easily alter conductivity and surface area. Many studies have been conducted to enhance the performance of carbon-based supercapacitors by utilizing various carbon compounds, including pure carbon nanotubes and multistage carbon nanostructures as electrodes. These studies have examined the characteristics and potential applications of numerous pure carbon nanostructures and scrutinized the use of a wide variety of carbon nanomaterials, such as AC, CNTs, GR, CNCs, and others, to improve capacitance. Ultimately, this study provides a roadmap for producing high-quality supercapacitors using carbon-based electrodes.
Characterization of Hybrid FRP Composite Produced from Recycled PET and CFRP
In recent years, carbon fiber has experienced a significant surge in popularity attributed to its exceptional properties, including its high-temperature resistance, mechanical strength, and cost-effectiveness. Many industries have been attracted to the prevalent use of carbon-fiber-reinforced polymers or plastics (CFRP). However, the increasing demand for carbon fiber has created a waste recycling problem that needs to be addressed. This research aimed to develop a recycled composite using PET waste as a solution to the growing demand for both materials. The recycled carbon fibers were processed chemically and mechanically to generate power for this process. Various samples were tested with different proportions of CF (10%, 20%, 30%, and 40%) to analyze their mechanical properties. The recycled composites are examined under tensile test conditions to further explore the waste carbon reinforcement’s effect on polymers’ characteristics. Scanning electron microscopy was also utilized for mechanical morphology evaluations. After analyzing the data, it was found that samples containing 20% CF had the highest elastic modulus value among all the mixes. This is attributed to the reinforcing effect of the fibers. The Elasticity Modulus of the filaments increased with the concentration of CF, reaching its peak at 20% before decreasing. This trend is also apparent in the visual representations. When compared to recycling, the Elasticity Modulus value of 20% CF filament increased by 97.5%. The precise value for CF with a 20% filament is 4719.3 MPa. Moreover, the composite samples were analyzed using SEM to characterize them, and it was discovered that the incorporation of 20% CF/PET filler produced the composition with the highest strength.
Self-Supported Co3O4@Mo-Co3O4 Needle-like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors
Herein, this report uses Co3O4 nanoneedles to decorate Mo-Co3O4 nanosheets over Ni foam, which were fabricated by the hydrothermal route, in order to create a supercapacitor material which is compared with its counterparts. The surface morphology of the developed material was investigated through scanning electron microscopy and the structural properties were evaluated using XRD. The charging storage activities of the electrode materials were evaluated mainly by cyclic voltammetry and galvanostatic charge-discharge investigations. In comparison to binary metal oxides, the specific capacities for the composite Co3O4@Mo-Co3O4 nanosheets and Co3O4 nano-needles were calculated to be 814, and 615 C g−1 at a current density of 1 A g−1, respectively. The electrode of the composite Co3O4@Mo-Co3O4 nanosheets displayed superior stability during 4000 cycles, with a capacity of around 90%. The asymmetric Co3O4@Mo-Co3O4//AC device achieved a maximum specific energy of 51.35 Wh Kg−1 and power density of 790 W kg−1. The Co3O4@Mo-Co3O4//AC device capacity decreased by only 12.1% after 4000 long GCD cycles, which is considerably higher than that of similar electrodes. All these results reveal that the Co3O4@Mo-Co3O4 nanocomposite is a very promising electrode material and a stabled supercapacitor.
Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review
Supercapacitors (SCs), also known as ultracapacitors, should be one of the most promising contenders for meeting the needs of human viable growth owing to their advantages: for example, excellent capacitance and rate efficiency, extended durability, and cheap materials price. Supercapacitor research on electrode materials is significant because it plays a vital part in the performance of SCs. Polyaniline (PANI) is an exceptional candidate for energy-storage applications owing to its tunable structure, multiple oxidation/reduction reactions, cheap price, environmental stability, and ease of handling. With their exceptional morphology, suitable functional linkers, metal sites, and high specific surface area, metal–organic frameworks (MOFs) are outstanding materials for electrodes fabrication in electrochemical energy storage systems. The combination of PANI and MOF (PANI/MOF composites) as electrode materials demonstrates additional benefits, which are worthy of exploration. The positive impacts of the two various electrode materials can improve the resultant electrochemical performances. Recently, these kinds of conducting polymers with MOFs composites are predicted to become the next-generation electrode materials for the development of efficient and well-organized SCs. The recent achievements in the use of PANI/MOFs-based electrode materials for supercapacitor applications are critically reviewed in this paper. Furthermore, we discuss the existing issues with PANI/MOF composites and their analogues in the field of supercapacitor electrodes in addition to potential future improvements.
Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu2O as the Hole Transport Material
Organic hole transport materials (HTMs) have been frequently used to achieve high power conversion efficiencies (PCEs) in regular perovskite solar cells (PSCs). However, organic HTMs or their ingredients are costly and time-consuming to manufacture. Therefore, one of the hottest research topics in this area has been the quest for an efficient and economical inorganic HTM in PSCs. To promote efficient charge extraction and, hence, improve overall efficiency, it is crucial to look into the desirable properties of inorganic HTMs. In this context, a simulation investigation using a solar cell capacitance simulator (SCAPS) was carried out on the performance of regular PSCs using inorganic HTMs. Several inorganic HTMs, such as nickel oxide (NiO), cuprous oxide (Cu2O), copper iodide (CuI), and cuprous thiocyanate (CuSCN), were incorporated in PSCs to explore matching HTMs that could add to the improvement in PCE. The simulation results revealed that Cu2O stood out as the best alternative, with electron affinity, hole mobility, and acceptor density around 3.2 eV, 60 cm2V−1s−1, and 1018 cm−3, respectively. Additionally, the results showed that a back electrode with high work-function was required to establish a reduced barrier Ohmic and Schottky contact, which resulted in efficient charge collection. In the simulation findings, Cu2O-based PSCs with an efficiency of more than 25% under optimal conditions were identified as the best alternative for other counterparts. This research offers guidelines for constructing highly efficient PSCs with inorganic HTMs.
Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints
Simplifying the design of lead-free perovskite solar cells (PSCs) has drawn a lot of interest due to their low manufacturing cost and relative non-toxic nature. Focus has been placed mostly on reducing the toxic lead element and eliminating the requirement for expensive hole transport materials (HTMs). However, in terms of power conversion efficiency (PCE), the PSCs using all charge transport materials surpass the environmentally beneficial HTM-free PSCs. The low PCEs of the lead-free HTM-free PSCs could be linked to poorer hole transport and extraction as well as lower light harvesting. In this context, a lead-free perovskite homojunction-based HTM-free PSC was investigated, and the performance was then assessed using a Solar Cell Capacitance Simulator (SCAPS). A two-step method was employed to fabricate lead-free perovskite homojunction-based HTM-free PSCs in order to validate the simulation results. The simulation results show that high hole mobility and a narrow band gap of cesium tin iodide (CsSnI3) boosted the hole collection and absorption spectrum, respectively. Additionally, the homojunction’s built-in electric field, which was identified using SCAPS simulations, promoted the directed transport of the photo-induced charges, lowering carrier recombination losses. Homojunction-based HTM-free PSCs having a CsSnI3 layer with a thickness of 100 nm, defect density of 1015 cm−3, and interface defect density of 1018 cm−3 were found to be capable of delivering high PCEs under a working temperature of 300 K. When compared to formamidinium tin iodide (FASnI3)-based devices, the open-circuit voltage (Voc), short-circuit density (Jsc), fill factor (FF), and PCE of FASnI3/CsSnI3 homojunction-based HTM-free PSCs were all improved from 0.66 to 0.78 V, 26.07 to 27.65 mA cm−2, 76.37 to 79.74%, and 14.62 to 19.03%, respectively. In comparison to a FASnI3-based device (PCE = 8.94%), an experimentally fabricated device using homojunction of FASnI3/CsSnI3 performs better with Voc of 0.84 V, Jsc of 22.06 mA cm−2, FF of 63.50%, and PCE of 11.77%. Moreover, FASnI3/CsSnI3-based PSC is more stable over time than its FASnI3-based counterpart, preserving 89% of its initial PCE. These findings provide promising guidelines for developing highly efficient and environmentally friendly HTM-free PSCs based on perovskite homojunction.
Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells
The conventional post-annealing (CPA) process is frequently employed and regarded a crucial step for high-quality perovskite thin-films. However, most researchers end up with unwanted characteristics because controlling the evaporation rate of perovskite precursor solvents during heat treatment is difficult. Most perovskite thin-films result in rough surfaces with pinholes and small grains with multiple boundaries, if the evaporation of precursor solvents is not controlled in a timely manner, which negatively affects the performance of perovskite solar cells (PSCs). Here, we present a surface-confined post-annealing (SCPA) approach for controlling the evaporation of perovskite precursor solvents and promoting crystallinity, homogeneity, and surface morphology of the resulting perovskites. The SCPA method not only modulates the evaporation of residual solvents, resulting in pinhole-free thin-films with large grains and fewer grain boundaries, but it also reduces recombination sites and facilitates the transport of charges in the resulting perovskite thin-films. When the method is changed from CPA to SCPA, the power conversion efficiency of PSC improves from 18.94% to 21.59%. Furthermore, as compared to their CPA-based counterparts, SCPA-based PSCs have less hysteresis and increased long-term stability. The SCPA is a potentially universal method for improving the performance and stability of PSCs by modulating the quality of perovskite thin-films.
Fabricating Planar Perovskite Solar Cells through a Greener Approach
High-quality perovskite thin films are typically produced via solvent engineering, which results in efficient perovskite solar cells (PSCs). Nevertheless, the use of hazardous solvents like precursor solvents (N-Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), gamma-butyrolactone (GBL)) and antisolvents (chlorobenzene (CB), dibutyl ether (DEE), diethyl ether (Et2O), etc.) is crucial to the preparation of perovskite solutions and the control of perovskite thin film crystallization. The consumption of hazardous solvents poses an imminent threat to both the health of manufacturers and the environment. Consequently, before PSCs are commercialized, the current concerns about the toxicity of solvents must be addressed. In this study, we fabricated highly efficient planar PSCs using a novel, environmentally friendly method. Initially, we employed a greener solvent engineering approach that substituted the hazardous precursor solvents with an environmentally friendly solvent called triethyl phosphate (TEP). In the following stage, we fabricated perovskite thin films without the use of an antisolvent by employing a two-step procedure. Of all the greener techniques used to fabricate PSCs, the FTO/SnO2/MAFAPbI3/spiro-OMeTAD planar device configuration yielded the highest PCE of 20.98%. Therefore, this work addresses the toxicity of the solvents used in the perovskite film fabrication procedure and provides a promising universal method for producing PSCs with high efficiency. The aforementioned environmentally friendly approach might allow for PSC fabrication on an industrial scale in the future under sustainable conditions.