Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Amador-Martínez, Isabel"
Sort by:
Sulforaphane Protects against Unilateral Ureteral Obstruction-Induced Renal Damage in Rats by Alleviating Mitochondrial and Lipid Metabolism Impairment
Unilateral ureteral obstruction (UUO) is an animal rodent model that allows the study of obstructive nephropathy in an accelerated manner. During UUO, tubular damage is induced, and alterations such as oxidative stress, inflammation, lipid metabolism, and mitochondrial impairment favor fibrosis development, leading to chronic kidney disease progression. Sulforaphane (SFN), an isothiocyanate derived from green cruciferous vegetables, might improve mitochondrial functions and lipid metabolism; however, its role in UUO has been poorly explored. Therefore, we aimed to determine the protective effect of SFN related to mitochondria and lipid metabolism in UUO. Our results showed that in UUO SFN decreased renal damage, attributed to increased mitochondrial biogenesis. We showed that SFN augmented peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nuclear respiratory factor 1 (NRF1). The increase in biogenesis augmented the mitochondrial mass marker voltage-dependent anion channel (VDAC) and improved mitochondrial structure, as well as complex III (CIII), aconitase 2 (ACO2) and citrate synthase activities in UUO. In addition, lipid metabolism was improved, observed by the downregulation of cluster of differentiation 36 (CD36), sterol regulatory-element binding protein 1 (SREBP1), fatty acid synthase (FASN), and diacylglycerol O-acyltransferase 1 (DGAT1), which reduces triglyceride (TG) accumulation. Finally, restoring the mitochondrial structure reduced excessive fission by decreasing the fission protein dynamin-related protein-1 (DRP1). Autophagy flux was further restored by reducing beclin and sequestosome (p62) and increasing B-cell lymphoma 2 (Bcl2) and the ratio of microtubule-associated proteins 1A/1B light chain 3 II and I (LC3II/LC3I). These results reveal that SFN confers protection against UUO-induced kidney injury by targeting mitochondrial biogenesis, which also improves lipid metabolism.
The Development of Dyslipidemia in Chronic Kidney Disease and Associated Cardiovascular Damage, and the Protective Effects of Curcuminoids
Chronic kidney disease (CKD) is a health problem that is constantly growing. This disease presents a diverse symptomatology that implies complex therapeutic management. One of its characteristic symptoms is dyslipidemia, which becomes a risk factor for developing cardiovascular diseases and increases the mortality of CKD patients. Various drugs, particularly those used for dyslipidemia, consumed in the course of CKD lead to side effects that delay the patient’s recovery. Therefore, it is necessary to implement new therapies with natural compounds, such as curcuminoids (derived from the Curcuma longa plant), which can cushion the damage caused by the excessive use of medications. This manuscript aims to review the current evidence on the use of curcuminoids on dyslipidemia in CKD and CKD-induced cardiovascular disease (CVD). We first described oxidative stress, inflammation, fibrosis, and metabolic reprogramming as factors that induce dyslipidemia in CKD and their association with CVD development. We proposed the potential use of curcuminoids in CKD and their utilization in clinics to treat CKD-dyslipidemia.
Sulforaphane Restores Mitochondrial β-Oxidation and Reduces Renal Lipid Accumulation in a Model of Releasing Unilateral Ureteral Obstruction
Obstructive nephropathy (ON), characterized by urine flow disruption, can induce chronic kidney disease (CKD). Although the release of the obstruction is performed as the primary intervention, renal pathology often persists and progresses. Accordingly, the murine model of releasing unilateral ureteral obstruction (RUUO) is valuable for investigating the molecular events underlying renal damage after obstruction release. Remarkably, after RUUO, disturbances such as oxidative stress, inflammation, lipid accumulation, and fibrosis continue to increase. Mitochondrial dysfunction contributes to fibrosis in the UUO model, but its role in RUUO remains unclear. Additionally, the impact of using antioxidants to restore mitochondrial function and prevent renal fibrosis in RUUO has not been determined. This study aimed to determine the therapeutic effect of pre-administering the antioxidant sulforaphane (SFN) in the RUUO model. SFN was administered 1 day before RUUO to evaluate mitochondrial biogenesis, fatty acids (FA) metabolism, bioenergetics, dynamics, and mitophagy/autophagy mechanisms in the kidney. Our data demonstrated that SFN enhanced mitochondrial biogenesis and reestablished mitochondrial oxygen consumption and β-oxidation. These effects collectively reduced lipid accumulation and normalized mitochondrial dynamics, mitophagy, and autophagy, thereby mitigating fibrosis after obstruction. Our findings suggest that SFN holds promise as a potential therapeutic agent in ON-induced CKD progression in RUUO and opens new avenues in studying antioxidant molecules to treat this disease.
Effect of N-Acetylcysteine in Mitochondrial Function, Redox Signaling, and Sirtuin 3 Levels in the Heart During Cardiorenal Syndrome Type 4 Development
Type 4 cardiorenal syndrome (CRS-4) is a pathology in which chronic kidney disease (CKD) triggers the development of cardiovascular disease. CKD pathophysiology produces alterations that can affect the bioenergetics of heart mitochondria, causing oxidative stress and reducing antioxidant glutathione (GSH) levels. GSH depletion alters protein function by affecting post-translational modifications such as S-glutathionylation (RS-SG), exacerbating oxidative stress, and mitochondrial dysfunction. On the other hand, N-acetylcysteine (NAC) is an antioxidant GSH precursor that modulates oxidative stress and RS-SG. Moreover, recent studies have found that NAC can activate the Sirtuin 3 (SIRT3) deacetylase in diseases. However, the role of NAC and its effects on mitochondrial function, redox signaling, and SIRT3 modifications in the heart during CRS-4 have not been studied. This study aimed to investigate the role of NAC in mitochondrial function, redox signaling, and SIRT3 in the hearts of animals with CRS-4 at two months of follow-up. Our results showed that the oral administration of NAC (600 mg/kg/day) improved blood pressure and reduced cardiac fibrosis. NACs’ protective effect was associated with preserving cardiac mitochondrial bioenergetics and decreasing these organelles’ hydrogen peroxide (H2O2) production. Additionally, NAC increased GSH levels in heart mitochondria and regulated the redox state, which coincided with an increase in nicotinamide adenine dinucleotide oxidized (NAD+) levels and a decrease in mitochondrial acetylated lysines. Finally, NAC increased SIRT3 levels and the activity of superoxide dismutase 2 (SOD-2) in the heart. Thus, treatment with NAC decreases mitochondrial alterations, restores redox signaling, and decreases SIRT3 disturbances during CRS-4 through an antioxidant defense mechanism.
Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
The Absence of Endothelial Sodium Channel α (αENaC) Reduces Renal Ischemia/Reperfusion Injury
The epithelial sodium channel (ENaC) has a key role in modulating endothelial cell stiffness and this in turn regulates nitric oxide (NO) synthesis. The physiological relevance of endothelial ENaC in pathological conditions where reduced NO bioavailability plays an essential role remains largely unexplored. Renal ischemia/reperfusion (IR) injury is characterized by vasoconstriction and sustained decrease in renal perfusion that is partially explained by a reduction in NO bioavailability. Therefore, we aimed to explore if an endothelial ENaC deficiency has an impact on the severity of renal injury induced by IR. Male mice with a specific endothelial sodium channel α (αENaC) subunit gene inactivation in the endothelium (endo-αENaCKO) and control littermates were subjected to bilateral renal ischemia of 22 min and were studied after 24 h of reperfusion. In control littermates, renal ischemia induced an increase in plasma creatinine and urea, augmented the kidney injury molecule-1 (Kim-1) and neutrophil gelatinase associated lipocalin-2 (NGAL) mRNA levels, and produced severe tubular injury. The absence of endothelial αENaC expression prevented renal tubular injury and renal dysfunction. Moreover, endo-αENaCKO mice recovered faster from renal hypoxia after the ischemia episode as compared to littermates. In human endothelial cells, pharmacological ENaC inhibition promoted endothelial nitric oxide synthase (eNOS) coupling and activation. Altogether, these data suggest an important role for endothelial αENaC in kidney IR injury through improving eNOS activation and kidney perfusion, thus, preventing ischemic injury.
Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images
Purpose The aim of this study was to evaluate the contribution of semiquantitative analysis of 180-min 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images for the assessment of aortitis in cases of suspected large vessel vasculitis (LVV) and to establish a threshold index for application in the clinical setting. Methods This prospective study included 43 patients (mean age 67.5 ± 12.9 years) with suspicion of LVV (25 with a final diagnosis of aortitis). 18 F-FDG PET/CT scan was acquired 180 min after injection of 7 MBq/kg of 18 F-FDG. A semiquantitative analysis was performed calculating the aortic wall maximum standardized uptake value (SUV max ) (T), the lumen SUV max (B) and the target to background ratio (TBR). These results were also compared with those obtained in a control population. Results The mean aortic wall SUV max was 2.00 ± 0.62 for patients with aortitis and 1.45 ± 0.31 for patients without aortitis ( p  < 0.0001). The TBR was 1.66 ± 0.26 for patients with aortitis and 1.24 ± 0.08 for patients without aortitis ( p  < 0.0001). The differences were also statistically significant when the patients with aortitis and controls were compared. Receiver-operating characteristic (ROC) analysis revealed that the area under the curve was greater for the TBR than for the aortic wall SUV max (0.997 vs 0.871). The highest sensitivity and specificity was obtained for a TBR of 1.34 (sensitivity 100 %, specificity 94.4 %). Conclusion Semiquantitative analysis of PET/CT images acquired 180 min after 18 F-FDG injection and the TBR index of 1.34 show very high accuracy and, therefore, are strongly recommended for the diagnosis of aortitis in the clinical setting.
Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a giant left pectoral muscle plasmacytoma and multiple myeloma case
Extramedullary plasmacytoma is an unusual manifestation in multiple myeloma (MM). It can present as a solitary bone lesion and/or soft-tissue mass. Plasmacytoma can be presented at any location, but it is more common in the head and neck, usually without systemic involvement. The presence of plasmacytoma in MM is a predictor of rapidly progressive disease. The value of fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (PET-FDG) is increasing, in the diagnosis, detection of occult lesions, and therapeutic monitoring. We describe a patient with rapidly-progressive, refractory, left pectoral muscle plasmacytoma and MM. A PET-FDG guided the therapy and allowed to identify the presence of disease relapse.
Assessment of aortitis by semiquantitative analysis of 180-min ^sup 18^F-FDG PET/CT acquisition images
The aim of this study was to evaluate the contribution of semiquantitative analysis of 180-min ^sup 18^F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images for the assessment of aortitis in cases of suspected large vessel vasculitis (LVV) and to establish a threshold index for application in the clinical setting. This prospective study included 43 patients (mean age 67.5±12.9years) with suspicion of LVV (25 with a final diagnosis of aortitis). ^sup 18^F-FDG PET/CT scan was acquired 180 min after injection of 7 MBq/kg of ^sup 18^F-FDG. A semiquantitative analysis was performed calculating the aortic wall maximum standardized uptake value (SUV^sub max^) (T), the lumen SUV^sub max^ (B) and the target to background ratio (TBR). These results were also compared with those obtained in a control population. The mean aortic wall SUV^sub max^ was 2.00±0.62 for patients with aortitis and 1.45±0.31 for patients without aortitis (p<0.0001). The TBR was 1.66±0.26 for patients with aortitis and 1.24±0.08 for patients without aortitis (p<0.0001). The differences were also statistically significant when the patients with aortitis and controls were compared. Receiver-operating characteristic (ROC) analysis revealed that the area under the curve was greater for the TBR than for the aortic wall SUV^sub max^ (0.997 vs 0.871). The highest sensitivity and specificity was obtained for a TBR of 1.34 (sensitivity 100 %, specificity 94.4 %). Semiquantitative analysis of PET/CT images acquired 180 min after ^sup 18^F-FDG injection and the TBR index of 1.34 show very high accuracy and, therefore, are strongly recommended for the diagnosis of aortitis in the clinical setting.[PUBLICATION ABSTRACT]
Assessment of aortitis by semiquantitative analysis of 180-min super(18)F-FDG PET/CT acquisition images
Purpose: The aim of this study was to evaluate the contribution of semiquantitative analysis of 180-min super(18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images for the assessment of aortitis in cases of suspected large vessel vasculitis (LVV) and to establish a threshold index for application in the clinical setting. Methods: This prospective study included 43 patients (mean age 67.5 plus or minus 12.9years) with suspicion of LVV (25 with a final diagnosis of aortitis). super(18)F-FDG PET/CT scan was acquired 180 min after injection of 7 MBq/kg of super(18)F-FDG. A semiquantitative analysis was performed calculating the aortic wall maximum standardized uptake value (SUV sub(max)) (T), the lumen SUV sub(max) (B) and the target to background ratio (TBR). These results were also compared with those obtained in a control population. Results: The mean aortic wall SUV sub(max) was 2.00 plus or minus 0.62 for patients with aortitis and 1.45 plus or minus 0.31 for patients without aortitis (p<0.0001). The TBR was 1.66 plus or minus 0.26 for patients with aortitis and 1.24 plus or minus 0.08 for patients without aortitis (p<0.0001). The differences were also statistically significant when the patients with aortitis and controls were compared. Receiver-operating characteristic (ROC) analysis revealed that the area under the curve was greater for the TBR than for the aortic wall SUV sub(max) (0.997 vs 0.871). The highest sensitivity and specificity was obtained for a TBR of 1.34 (sensitivity 100 %, specificity 94.4 %). Conclusion: Semiquantitative analysis of PET/CT images acquired 180 min after super(18)F-FDG injection and the TBR index of 1.34 show very high accuracy and, therefore, are strongly recommended for the diagnosis of aortitis in the clinical setting.