Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Amann-Zalcenstein, Daniela"
Sort by:
Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments
Single cell RNA-sequencing (scRNA-seq) technology has undergone rapid development in recent years, leading to an explosion in the number of tailored data analysis methods. However, the current lack of gold-standard benchmark datasets makes it difficult for researchers to systematically compare the performance of the many methods available. Here, we generated a realistic benchmark experiment that included single cells and admixtures of cells or RNA to create ‘pseudo cells’ from up to five distinct cancer cell lines. In total, 14 datasets were generated using both droplet and plate-based scRNA-seq protocols. We compared 3,913 combinations of data analysis methods for tasks ranging from normalization and imputation to clustering, trajectory analysis and data integration. Evaluation revealed pipelines suited to different types of data for different tasks. Our data and analysis provide a comprehensive framework for benchmarking most common scRNA-seq analysis steps.A dataset made up of single cancer cells or their mixtures serves as a benchmark for testing almost 4,000 combinations of scRNA-seq data analysis methods.
High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states
Dynamic protein binding to DNA elements regulates genome function and cell fate. Although methods for mapping in vivo protein-DNA interactions are becoming crucial for every aspect of genomic research, they are laborious and costly, thereby limiting progress. Here we present a protocol for mapping in vivo protein-DNA interactions using a high-throughput chromatin immunoprecipitation (HT-ChIP) approach. By using paramagnetic beads, we streamline the entire ChIP and indexed library construction process: sample transfer and loss is minimized and the need for manually labor-intensive procedures such as washes, gel extraction and DNA precipitation is eliminated. All of this allows for fully automated, cost effective and highly sensitive 96-well ChIP sequencing (ChIP-seq). Sample preparation takes 3 d from cultured cells to pooled libraries. Compared with previous methods, HT-ChIP is more suitable for large-scale in vivo studies, specifically those measuring the dynamics of a large number of different chromatin modifications/transcription factors or multiple perturbations.
scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data
Single-cell RNA sequencing (scRNA-seq) technology allows researchers to profile the transcriptomes of thousands of cells simultaneously. Protocols that incorporate both designed and random barcodes have greatly increased the throughput of scRNA-seq, but give rise to a more complex data structure. There is a need for new tools that can handle the various barcoding strategies used by different protocols and exploit this information for quality assessment at the sample-level and provide effective visualization of these results in preparation for higher-level analyses. To this end, we developed scPipe, an R/Bioconductor package that integrates barcode demultiplexing, read alignment, UMI-aware gene-level quantification and quality control of raw sequencing data generated by multiple protocols that include CEL-seq, MARS-seq, Chromium 10X, Drop-seq and Smart-seq. scPipe produces a count matrix that is essential for downstream analysis along with an HTML report that summarises data quality. These results can be used as input for downstream analyses including normalization, visualization and statistical testing. scPipe performs this processing in a few simple R commands, promoting reproducible analysis of single-cell data that is compatible with the emerging suite of open-source scRNA-seq analysis tools available in R/Bioconductor and beyond. The scPipe R package is available for download from https://www.bioconductor.org/packages/scPipe.
Local administration of regulatory T cells promotes tissue healing
Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing. Regulatory T cells (Tregs) are known for suppressing inflammatory processes, but their full capacity for tissue regeneration is yet to be harnessed. Here, the authors demonstrate the efficiency of Tregs in facilitating tissue healing in mouse models of bone, muscle, and skin injury, with monocytes/macrophages and interleukin-10 playing a key mechanistic role in the process.
Deterministic direct reprogramming of somatic cells to pluripotency
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo , lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro . The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution. This study shows that the combination of naive pluripotency growth conditions, Oct4, Sox2, Klf4 and Myc (OSKM) overexpression, and depleting the Mbd3/NuRD co-repressor results in deterministic and synchronized reprogramming to pluripotency. Efficient and near-complete conversion to iPS cells Somatic cells can be reprogrammed to pluripotency by expression of exogenous factors,classically Oct4, Sox2,Klf4 and c-Myc (OSKM). During reprogramming, only a fraction of the cells converts into induced pluripotent stem (iPS) cells. The nature of rate limiting barrier(s) that prevent the majority of cells to convert into iPS cells remains elusive and it is unknown whether iPS cell reprogramming can be rendered deterministic and very efficient. Jacob Hanna and colleagues now show that the combination of 2i/LIF growth conditions, OSKM overexpression and neutralizing the Mbd3/NURD co-repressor results in deterministic and synchronized reprogramming to pluripotency. Using this approach, they found that almost 100% of mouse and human somatic cells convert into naive iPS cells after only seven days of OSKM induction.
Tregs delivered post-myocardial infarction adopt an injury-specific phenotype promoting cardiac repair via macrophages in mice
Regulatory T cells (Tregs) are key immune regulators that have shown promise in enhancing cardiac repair post-MI, although the mechanisms remain elusive. Here, we show that rapidly increasing Treg number in the circulation post-MI via systemic administration of exogenous Tregs improves cardiac function in male mice, by limiting cardiomyocyte death and reducing fibrosis. Mechanistically, exogenous Tregs quickly home to the infarcted heart and adopt an injury-specific transcriptome that mediates repair by modulating monocytes/macrophages. Specially, Tregs lead to a reduction in pro-inflammatory Ly6C Hi CCR2 + monocytes/macrophages accompanied by a rapid shift of macrophages towards a pro-repair phenotype. Additionally, exogenous Treg-derived factors, including nidogen-1 and IL-10, along with a decrease in cardiac CD8 + T cell number, mediate the reduction of the pro-inflammatory monocyte/macrophage subset in the heart. Supporting the pivotal role of IL-10, exogenous Tregs knocked out for IL-10 lose their pro-repair capabilities. Together, this study highlights the beneficial use of a Treg-based therapeutic approach for cardiac repair with important mechanistic insights that could facilitate the development of novel immunotherapies for MI. After myocardial infarction, excessive inflammation impairs heart repair, leading to reduced cardiac function. Here, the authors show that treatment with anti-inflammatory immune cells (regulatory T cells) improves cardiac repair by modulating the activity of a specific subset of macrophages in the heart.
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
The H3K27 demethylase Utx is reported to be a critical regulator for the initiation of somatic and germ cell reprogramming. Epigenetic stem-cell programming Epigenetic changes are a key feature of cell reprogramming, but little is known about the factors responsible for chromatin or DNA modifications during this process. Jacob Hanna and colleagues report that histone H3K27 demethylase Utx is a critical regulator of the initiation of somatic-cell reprogramming. Cells lacking Utx cannot be reprogrammed by known transcription-factor cocktails, and Utx-deficient cells fail to contribute to germline transmission in mouse chimaeras. Therefore, Utx is necessary for both somatic and germ-cell reprogramming, in vitro and in vivo . This work highlights a connection between mechanisms of in vitro production of induced pluripotent stem cells and the regulation of early germline development. Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM) 1 . This process is accompanied by genome-wide epigenetic changes 2 , 3 , 4 , 5 , but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx 6 , 7 , 8 , 9 (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5–11 primordial germ cells (PGCs) 10 , and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo . Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.
Single-cell analyses reveal the clonal and molecular aetiology of Flt3L-induced emergency dendritic cell development
Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative ‘early progenitor’-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of ‘emergency’ haematopoiesis.Lin et al. examine the process of clonal tuning during Flt3L-mediated emergency haematopoiesis, which leads to selective expansion of haematopoietic stem and progenitor cells that are primed to produce type 1 conventional dendritic cells instead of modulating cell fate.
A new lymphoid-primed progenitor marked by Dach1 downregulation identified with single cell multi-omics
A classical view of blood cell development is that multipotent hematopoietic stem and progenitor cells (HSPCs) become lineage-restricted at defined stages. Lin − c-Kit + Sca-1 + Flt3 + cells, termed lymphoid-primed multipotent progenitors (LMPPs), have lost megakaryocyte and erythroid potential but are heterogeneous in their fate. Here, through single-cell RNA sequencing, we identify the expression of Dach1 and associated genes in this fraction as being coexpressed with myeloid/stem genes but inversely correlated with lymphoid genes. Through generation of Dach1 –GFP reporter mice, we identify a transcriptionally and functionally unique Dach1 –GFP − subpopulation within LMPPs with lymphoid potential with low to negligible classic myeloid potential. We term these ‘lymphoid-primed progenitors’ (LPPs). These findings define an early definitive branch point of lymphoid development in hematopoiesis and a means for prospective isolation of LPPs. Exploring transcriptional heterogeneity of cKit + Sca1 + HSPCs using single cell RNA-sequencing, Naik and colleagues identify a population termed ‘lymphoid primed progenitors’ as the earliest stage of lymphoid lineage commitment, marked by downregulation of the stem/myeloid transcription factor Dach1.
Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues
Amos Tanay and colleagues characterize DNA methylation polymorphism within cell populations and track immortalized fibroblasts in culture for over 300 generations to show that formation of differentially methylated regions occurs through a stochastic process and nearly deterministic epigenetic remodeling. DNA methylation has been comprehensively profiled in normal and cancer cells, but the dynamics that form, maintain and reprogram differentially methylated regions remain enigmatic. Here, we show that methylation patterns within populations of cells from individual somatic tissues are heterogeneous and polymorphic. Using in vitro evolution of immortalized fibroblasts for over 300 generations, we track the dynamics of polymorphic methylation at regions developing significant differential methylation on average. The data indicate that changes in population-averaged methylation occur through a stochastic process that generates a stream of local and uncorrelated methylation aberrations. Despite the stochastic nature of the process, nearly deterministic epigenetic remodeling emerges on average at loci that lose or gain resistance to methylation accumulation. Changes in the susceptibility to methylation accumulation are correlated with changes in histone modification and CTCF occupancy. Characterizing epigenomic polymorphism within cell populations is therefore critical to understanding methylation dynamics in normal and cancer cells.