Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
954
result(s) for
"Amato, Angela"
Sort by:
Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation
by
Di Leo, Paolo
,
Fichera, Stefania
,
Amato, Angela
in
optimization
,
photovoltaic plants
,
planning
2021
This paper presents a methodology to maximize the self-sufficiency or cost-effectiveness of grid-connected prosumers by optimizing the sizes of photovoltaic (PV) systems and electrochemical batteries. In the optimal sizing procedure, a limitation on the maximum injection in the grid can affect the energy flows, the economic effectiveness of the investments, and thus the sizing results. After the explanation of the procedure, a case study is presented, and a parametric analysis of the effect of possible injection limits is shown. The procedure is applied to size plants for an Italian domestic prosumer, whose electric load profile was measured for a year. A software program developed using the proposed methodology is also briefly presented. It is used for both research and educational purposes, both in laboratory classes and in remote lessons.
Journal Article
Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer
2016
In cancer, the tumour suppressor gene
TP53
undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53–proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP–microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.
Walerych
et al.
show that p53 missense mutants upregulate the proteasome and increase breast cancer cell resistance to proteasome inhibitors. Combined inhibition of p53 mutants and the proteasome leads to increased therapeutic efficacy.
Journal Article
A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer
by
Demartini, Andrea
,
Amato, Angela
,
Zambelli, Alberto
in
Algorithms
,
Antineoplastic Agents - therapeutic use
,
Bioinformatics
2016
The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic action in cancer. In our work, we applied network-based modeling within a novel bioinformatics pipeline to identify promising multi-target drugs. Given a certain tumor type/subtype, we derive a disease-specific Protein-Protein Interaction (PPI) network by combining different data-bases and knowledge repositories. Next, the application of suitable graph-based algorithms allows selecting a set of potentially interesting combinations of drug targets. A list of drug candidates is then extracted by applying a recent data fusion approach based on matrix tri-factorization. Available knowledge about selected drugs mechanisms of action is finally exploited to identify the most promising candidates for planning in vitro studies. We applied this approach to the case of Triple Negative Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and that lacks of specific molecular targets. Our \"in-silico\" findings have been confirmed by a number of in vitro experiments, whose results demonstrated the ability of the method to select candidates for drug repurposing.
Journal Article
CENPA overexpression promotes genome instability in pRb-depleted human cells
by
Schillaci, Tiziana
,
Lentini, Laura
,
Di Leonardo, Aldo
in
Aneuploidy
,
Autoantigens - genetics
,
Autoantigens - physiology
2009
Background
Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb) has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified.
Results
Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss.
Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC). However, despite
MAD2
up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed
BRCA1
overexpression that seemed responsible for
MAD2
up-regulation.
Post-transcriptional silencing of
CENPA
by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells.
Conclusion
Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing
CENPA
overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.
Journal Article
Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists
2012
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.
Journal Article
Energy Evaluation of a PV-Based Test Facility for Assessing Future Self-Sufficient Buildings
by
Bilardo, Matteo
,
Fabrizio, Enrico
,
Amato, Angela
in
battery energy storage potential
,
building energy performance
,
building renewables integration
2021
In recent years, investigations on advanced technological solutions aiming to achieve high-energy performance in buildings have been carried out by research centers and universities, in accordance with the reduction in buildings’ energy consumption required by European Union. However, even if the research and design of new technological solutions makes it possible to achieve the regulatory objectives, a building’s performance during operation deviates from simulations. To deepen this topic, interesting studies have focused on testing these solutions on full-scale facilities used for real-life activities. In this context, a test facility will be built in the university campus of Politecnico di Torino (Italy). The facility has been designed to be an all-electric nearly Zero Energy Building (nZEB), where heating and cooling demand will be fulfilled by an air-source heat pump and photovoltaic generators will meet the energy demand. In this paper, the facility energy performance is evaluated through a dynamic simulation model. To improve energy self-sufficiency, the integration of lithium-ion batteries in a HVAC system is investigated and their storage size is optimized. Moreover, the facility has been divided into three units equipped with independent electric systems with the aim of estimating the benefits of local energy sharing. The simulation results clarify that the facility meets the expected energy performance, and that it is consistent with a typical European nZEB. The results also demonstrate that the local use of photovoltaic energy can be enhanced thanks to batteries and local energy sharing, achieving a greater independence from the external electrical grid. Furthermore, the analysis of the impact of the local energy sharing makes the case study of particular interest, as it represents a simplified approach to the energy community concept. Thus, the results clarify the academic potential for this facility, in terms of both research and didactic purposes.
Journal Article
NOTCH3 expression is linked to breast cancer seeding and distant metastasis
by
Boughey, Judy
,
Amato, Angela
,
Leontovich, Alexey A.
in
Aurora kinase
,
Biomedical and Life Sciences
,
Biomedicine
2018
Background
Development of distant metastases involves a complex multistep biological process termed the
invasion-metastasis cascade
, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive.
Methods
We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα
+
) MCF-7 breast cancer cells with constitutive active Raf-1/mitogen-associated protein kinase (MAPK) signaling (vMCF-7
Raf-1
) and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The critical role of NOTCH3 in inducing an invasive phenotype and poor outcome was corroborated in unique TNBC cells resulting from a patient-derived brain metastasis (TNBC-M25) and in publicly available claudin-low breast tumor specimens collected from participants in the Molecular Taxonomy of Breast Cancer International Consortium database.
Results
In this study, we identified an association between NOTCH3 expression and development of metastases in ERα
+
and TNBC models. ERα
+
breast tumor xenografts with a constitutive active Raf-1/MAPK signaling developed spontaneous lung metastases through the clonal expansion of cancer cells expressing a NOTCH3 reprogramming network. Abrogation of NOTCH3 expression significantly reduced the self-renewal and invasive capacity of ex vivo breast cancer cells, restoring a luminal CD44
low
/CD24
high
/ERα
high
phenotype. Forced expression of the mitotic Aurora kinase A (AURKA), which promotes breast cancer metastases, failed to restore the invasive capacity of NOTCH3-null cells, demonstrating that NOTCH3 expression is required for an invasive phenotype. Likewise, pharmacologic inhibition of NOTCH signaling also impaired TNBC cell seeding and metastatic growth. Significantly, the role of aberrant NOTCH3 expression in promoting tumor self-renewal, invasiveness, and poor outcome was corroborated in unique TNBC cells from a patient-derived brain metastasis and in publicly available claudin-low breast tumor specimens.
Conclusions
These findings demonstrate the key role of NOTCH3 oncogenic signaling in the genesis of breast cancer metastasis and provide a compelling preclinical rationale for the design of novel therapeutic strategies that will selectively target NOTCH3 to halt metastatic seeding and to improve the clinical outcomes of patients with breast cancer.
Journal Article
Energy Tariff Policies for Renewable Energy Development: Comparison between Selected European Countries and Sri Lanka
by
Wickramasinghe, Harsha
,
Galappaththi, Udayanga I. K.
,
Amato, Angela
in
Alternative energy sources
,
Analysis
,
Annual reports
2023
This article is written within the European Project “THREE-Lanka” which has the aim of modernizing the higher education related to Renewable Energy (RE) in Sri Lanka. The paper presents the outcomes of analysing various incentive schemes to stimulate RE development. In Europe, there was substantial growth in RE installation through generous incentives in the first years. Then, to regulate this growth, in recent years, the auction system has been introduced to improve the competition among companies that install RE plants. In Sri Lanka, on the other hand, the main energy tariff policies focus on the spread of PhotoVoltaics (PV) through contributions based on the electricity fed into the grid. This paper provides an updated view of the evolution of the energy tariff policies in the relevant European countries with respect to Sri Lanka, covering some recent policy developments. Within the Sri Lankan framework, four case studies involving residential, commercial, and industrial users are outlined to suggest better mechanisms (in the case of not adequate current incentive tariff) for supporting the deployment of grid-connected PV systems in a wide power range. Such knowledge transfer in the THREE-Lanka project will demonstrate the enormous potential RE capacity in a developing country, still depending on fossil fuels but willing to follow the path towards sustainability.
Journal Article
p63 Promotes Cell Survival through Fatty Acid Synthase
2009
There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN), a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9) or immortalized prostate epithelial (iPrEC) cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT) was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.
Journal Article
Correction: A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer
2017
In the methods section, within the sub section titled Target Selection, there is an error in Formula (2). (2016) A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer.
Journal Article