Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
140,096 result(s) for "An, Chao"
Sort by:
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom
Magnetic fluid hyperthermia (MFH) is a novel reliable technique with excellent potential for thermal therapies and treating breast tumours. This method involves injecting a magnetic nanofluid into the tumour and applying an external AC magnetic field to induce heat in the magnetic nanoparticles (MNPs) and raise the tumour temperature to ablation temperature ranges. Because of the complexity of considering and coupling all different physics involves in this phenomenon and also due to the intricacy of a thorough FEM numerical study, few FEM-based studies address the entire MFH process as similar to reality as possible. The current study investigates a FEM-based three-dimensional numerical simulation of MFH of breast tumours as a multi-physics problem. An anatomically realistic breast phantom (ARBP) is considered, some magnetic nanofluid is injected inside the tumour, and the diffusion phenomenon is simulated. Then, the amount of heat generated in the MNP-saturated tumour area due to an external AC magnetic field is simulated. In the end, the fraction of tumour tissue necrotized by this temperature rise is evaluated. The study’s results demonstrate that by injecting nanofluid and utilizing seven circular copper windings with each coil carrying 400 A current with a frequency of 400 kHz for generating the external AC magnetic field, the temperature in tumour tissue can be raised to a maximum of about 51.4°C, which leads to necrosis of entire tumour tissue after 30 minutes of electromagnetic field (EMF) exposure. This numerical platform can depict all four various physics involved in the MFH of breast tumours by numerically solving all different equation sets coupled together with high precision. Thus, the proposed model can be utilized by clinicians as a reliable tool for predicting and identifying the approximate amount of temperature rise and the necrotic fraction of breast tumour, which can be very useful to opt for the best MFH therapeutic procedure and conditions based on various patients. In future works, this numerical platform’s results should be compared with experimental in-vivo results to improve and modify this platform in order to be ready for clinical applications.
Tsunamis and tsunami warning: Recent progress and future prospects
Tsunamis are one of the most destructive disasters in the ocean. Large tsunamis are mostly generated by earthquakes, and they can propagate across the ocean without significantly losing energy. During the shoaling process in coastal areas, the wave amplitude increases dramatically, causing severe life loss and property damage. There have been frequent tsunamis since the 21st century, drawing the attention of many countries on the study of tsunami mechanism and warning. Tsunami records also play an essential role in deriving earthquake rupture models in subduction zones. This paper reviews the recent progress and limitations of tsunami research, from the aspects of tsunami generation, propagation, inversion and warning. Potential tsunami warning strategies are discussed and future prospects on tsunami research are provided.
A comprehensive numerical procedure for high-intensity focused ultrasound ablation of breast tumour on an anatomically realistic breast phantom
High-Intensity Focused Ultrasound (HIFU) as a promising and impactful modality for breast tumor ablation, entails the precise focalization of high-intensity ultrasonic waves onto the tumor site, culminating in the generation of extreme heat, thus ablation of malignant tissues. In this paper, a comprehensive three-dimensional (3D) Finite Element Method (FEM)-based numerical procedure is introduced, which provides exceptional capacity for simulating the intricate multiphysics phenomena associated with HIFU. Furthermore, the application of numerical procedures to an anatomically realistic breast phantom (ARBP) has not been explored before. The integrity of the present numerical procedure has been established through rigorous validation, incorporating comparative assessments with previous two-dimensional (2D) simulations and empirical data. For ARBP ablation, the administration of a 0.1 MPa pressure input pulse at a frequency of 1.5 MHz, sustained at the focal point for 10 seconds, manifests an ensuing temperature elevation to 80°C. It is noteworthy that, in contrast, the prior 2D simulation using a 2D phantom geometry reached just 72°C temperature under the identical treatment regimen, underscoring the insufficiency of 2D models, ascribed to their inherent limitations in spatially representing acoustic energy, which compromises their overall effectiveness. To underscore the versatility of this numerical platform, a simulation of a more clinically relevant HIFU therapy procedure has been conducted. This scenario involves the repositioning of the ultrasound focal point to three separate lesions, each spaced at 3 mm intervals, with ultrasound exposure durations of 6 seconds each and a 5-second interval for movement between focal points. This approach resulted in a more uniform high-temperature distribution at different areas of the tumour, leading to the ablation of almost all parts of the tumour, including its verges. In the end, the effects of different abnormal tissue shapes are investigated briefly as well. For solid mass tumors, 67.67% was successfully ablated with one lesion, while rim-enhancing tumors showed only 34.48% ablation and non-mass enhancement tumors exhibited 20.32% ablation, underscoring the need for multiple lesions and tailored treatment plans for more complex cases.
Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming
Examining tropical regional precipitation anomalies under global warming in 10 coupled global climate models, several mechanisms are consistently found. The tendency of rainfall to increase in convergence zones with large climatological precipitation and to decrease in subsidence regions—the rich-get-richer mechanism—has previously been examined in different approximations by Chou and Neelin, and Held and Soden. The effect of increased moisture transported by the mean circulation (the “direct moisture effect” or “thermodynamic component” in respective terminology) is relatively robust, while dynamic feedback is poorly understood and differs among models. The argument outlined states that the thermodynamic component should be a good approximation for large-scale averages; this is confirmed for averages across convection zones and descent regions, respectively. Within the convergence zones, however, dynamic feedback can substantially increase or decrease precipitation anomalies. Regions of negative precipitation anomalies within the convergence zones are associated with local weakening of ascent, and some of these exhibit horizontal dry advection associated with the “upped-ante” mechanism. Regions of increased ascent have strong positive precipitation anomalies enhanced by moisture convergence. This dynamic feedback is consistent with reduced gross moist stability due to increased moisture not being entirely compensated by effects of tropospheric warming and a vertical extent of convection. Regions of reduced ascent with positive precipitation anomalies are on average associated with changes in the vertical structure of vertical velocity, which extends to higher levels. This yields an increase in the gross moist stability that opposes ascent. The reductions in ascent associated with gross moist stability and upped-ante effects, respectively, combine to yield reduced ascent averaged across the convergence zones. Over climatological subsidence regions, positive precipitation anomalies can be associated with a convergence zone shift induced locally by anomalous heat flux from the ocean. Negative precipitation anomalies have a contribution from the thermodynamic component but can be enhanced or reduced by changes in the vertical velocity. Regions of enhanced subsidence are associated with an increased outgoing longwave radiation or horizontal cold convection. Reductions of subsidence are associated with changes of the vertical profile of vertical velocity, increasing gross moist stability.
3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications
Three-dimensional (3D) printing, alternatively known as additive manufacturing, is a transformative technology enabling precise, customized, and efficient manufacturing of components with complex structures. It revolutionizes traditional processes, allowing rapid prototyping, cost-effective production, and intricate designs. The 3D printed graphene-based materials combine graphene’s exceptional properties with additive manufacturing’s versatility, offering precise control over intricate structures with enhanced functionalities. To gain comprehensive insights into the development of 3D printed graphene and graphene/polymer composites, this review delves into their intricate fabrication methods, unique structural attributes, and multifaceted applications across various domains. Recent advances in printable materials, apparatus characteristics, and printed structures of typical 3D printing techniques for graphene and graphene/polymer composites are addressed, including extrusion methods (direct ink writing and fused deposition modeling), photopolymerization strategies (stereolithography and digital light processing) and powder-based techniques. Multifunctional applications in energy storage, physical sensor, stretchable conductor, electromagnetic interference shielding and wave absorption, as well as bio-applications are highlighted. Despite significant advancements in 3D printed graphene and its polymer composites, innovative studies are still necessary to fully unlock their inherent capabilities.
Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability
Surges and glacier avalanches are expressions of glacier instability, and among the most dramatic phenomena in the mountain cryosphere. Until now, the catastrophic collapse of a glacier, combining the large volume of surges and mobility of ice avalanches, has been reported only for the 2002 130 × 106 m3 detachment of Kolka Glacier (Caucasus Mountains), which has been considered a globally singular event. Here, we report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68 ± 2 × 106 m3 and 83 ± 2 × 106 m3. On the basis of satellite remote sensing, numerical modelling and field investigations, we find that the twin collapses were caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties. These factors converged to produce surge-like enhancement of driving stresses and massively reduced basal friction connected to subglacial water and fine-grained bed lithology, to eventually exceed collapse thresholds in resisting forces of the tongues frozen to their bed. Our findings show that large catastrophic instabilities of low-angle glaciers can happen under rare circumstances without historical precedent.
Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles
The ultimate goal of phototherapy based on nanoparticles, such as photothermal therapy (PTT) which generates heat and photodynamic therapy (PDT) which not only generates reactive oxygen species (ROS) but also induces a variety of anti-tumor immunity, is to kill tumors. In addition, due to strong efficacy in clinical treatment with minimal invasion and negligible side effects, it has received extensive attention and research in recent years. In this paper, the generations of nanomaterials in PTT and PDT are described separately. In clinical application, according to the different combination pathway of nanoparticles, it can be used to treat different diseases such as tumors, melanoma, rheumatoid and so on. In this paper, the mechanism of pathological treatment is described in detail in terms of inducing apoptosis of cancer cells by ROS produced by PDT, immunogenic cell death to provoke the maturation of dendritic cells, which in turn activate production of CD4+ T cells, CD8+T cells and memory T cells, as well as inhibiting heat shock protein (HSPs), STAT3 signal pathway and so on.
Artificial Intelligent IoT-Based Cognitive Hardware for Agricultural Precision Analysis
Traditionally, farmers have used human resources for productivity, which could be more efficient and manageable. Farmers have been trying to improve agricultural efficiency and optimize productivity with limited cultivation resources. This study presents an intelligent circulating agricultural farming system that implements monitoring, alerting, automation, and environmental prediction functions. With various sensors, the system constantly collects data on climate conditions, including 1) temperature, 2) humidity, and 3) soil content. Furthermore, we integrated machine learning to forecast the requirements for temperature, humidity, and fertilizer, the most significant growth factors for planting. As a result, the proposed system successfully controlled the cultivation more precisely. An extensive experimentation was conducted on specific crops and environmental conditions to evaluate the proposed model's efficacy. The findings of this research contribute to a deeper understanding of the potential benefits of the proposed integrated system. The results demonstrate how the AI, IoT, and cognitive hardware framework can significantly enhance agricultural precision, ultimately leading to more sustainable and efficient crop production practices.
The willingness to adopt the Internet of Things (IoT) conception in Taiwan’s construction industry
Internet of Things (IoT) conception has become a popular trend among industries. Many have already adopted the technology and put it into practice. IoT can incentive and change the way people conduct business in the construction industry. The objective of the research is to figure out the impact factors that influence practitioners’ willingness to adopt IoT in Taiwan’s construction industry. The hypothesis was developed based on a comprehensive literature review and the concept of the Unified Theory of Acceptance and Use of Technology (UTUAT). The UTUAT framework and hypotheses developed included 5 main hypotheses, 6 aspects and 33 stems. A pilot study aimed at experienced practitioners in the industry was carried out before the full-scale survey to adjust the stems. The adjusted questionnaire including 31 stems belonging to 7 aspects was then distributed to practitioners. A total of 282 valid questionnaires distributed were collected and 6 types of analysis (descriptive statistics, reliability, validity, t-test, one-way of variance, and structural equation modelling). The findings including (1) anticipated benefits significantly affect the users’ willingness to adopt IoT; (2) anticipated efforts significantly affect the users’ willingness to adopt IoT; (3) societal expectations significantly affect the users’ willingness to adopt IoT.
Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity
Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy precipitation but becomes less frequent and weaker for light precipitation. Changes in precipitation frequency and intensity are both controlled by thermodynamic and dynamic components. The thermodynamic component is induced by changes in atmospheric water vapor, while the dynamic component is associated with changes in vertical motion. A set of equations is derived to estimate both thermodynamic and dynamic contributions to changes in frequency and intensity of precipitation, especially for heavy precipitation. In the thermodynamic contribution, increased water vapor reduces the magnitude of the required vertical motion to generate the same strength of precipitation, so precipitation frequency increases. Increased water vapor also intensifies precipitation due to the enhancement of water vapor availability in the atmosphere. In the dynamic contribution, the more stable atmosphere tends to reduce the frequency and intensity of precipitation, except for the heaviest precipitation. The dynamic component strengthens the heaviest precipitation in most climate model simulations, possibly due to a positive convective feedback.