Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,489
result(s) for
"An, Minghui"
Sort by:
Factors associated with high-risk low-level viremia leading to virologic failure: 16-year retrospective study of a Chinese antiretroviral therapy cohort
2020
Background
Low level viremia (LLV) often occurs during antiretroviral therapy (ART) against HIV-1. However, whether LLV increases the risk of virologic failure (VF) is controversial because of the non-uniform definitions of LLV and VF.
Methods
A long-term first line regimen ART cohort from 2002 to 2018 from Shenyang, northeast China, was retrospectively studied. All participants were followed up every 3 to 6 months to evaluate the treatment effect. The high-risk LLV subgroups leading to VF (with strict standards) were explored with Cox proportional hazards model and linear mixed-effect model. The association factors of high-risk LLV were further explored using multivariate logistic regression analyses.
Results
A total of 2155 HIV-1 infected participants were included; of these, 38.7% showed LLV. Both high level LLV (HLLV) and any other level LLV coupled with high level blip (HLB) showed higher risk of VF (hazards ratios, HR
HLLV
= 5.93, and HR
HLB
= 2.84,
p
< 0.05 respectively). Moreover, HR increased with prolonged duration of LLV. Independent factors associated with high-risk LLV included the zenith baseline viral load (VL) above 6 log copies/ml (aOR = 3.49,
p
= 0.002), nadir baseline CD4 + T cell counts below 200 cells/mm
3
(aOR = 1.78,
p
= 0.011), Manchu (aOR = 2.03,
p
= 0.003), ART over 60 months (aOR = 1.81,
p
= 0.004), AZT + 3TC + NVP (aOR = 2.26,
p
< 0.001) or DDI-based regimen (aOR = 9.96,
p
= 0.002), and subtype B′ infection (aOR = 8.22,
p
= 0.001).
Conclusions
In case of VF with strict standards, high-risk LLV leading to VF includes VL above 400 copies/ml, occurring at least once. Serious laboratory indicators or advanced stage of infection, long term ART and subtype B′ infection might also predict the occurrence of high-risk LLV.
Journal Article
Crosstalk in competing endogenous RNA networks reveals new circular RNAs involved in the pathogenesis of early HIV infection
by
Zhang, Hui
,
Zhang, Yue
,
An, Minghui
in
Acquired immune deficiency syndrome
,
AIDS
,
Antiviral agents
2018
Background
The events in early HIV infection (EHI) are important determinants of disease severity and progression rate to AIDS, but the mechanisms of pathogenesis in EHI have not been fully understood. Circular RNAs (circRNAs) have been verified as “microRNA sponges” that regulate gene expression through competing endogenous RNA (ceRNA) networks, but circRNA expression profiles and their contribution to EHI pathogenesis are still unclear.
Methods
Two different libraries were constructed with RNA from human peripheral blood mononuclear cells from 3 HARRT-naive EHI patients and 3 healthy controls (HCs). The complete transcriptomes were sequenced with RNA sequencing (RNA-Seq) and miRNA sequencing (miRNA-Seq). The differentially expressed (DE) RNAs were validated with RT-qPCR. The circRNA profile and circRNA-associated-ceRNA network in EHI were analyzed with the integrated data of RNA-Seq and miRNA-Seq. Gene ontology (GO) analysis was used to annotate the circRNAs involved in the circRNA-associated-ceRNA networks.
Results
A total of 1365 circRNAs, 30 miRNAs, and 2049 mRNAs were differentially expressed between HARRT-naive EHI patients and HCs. A ceRNA network was constructed with 516 DE circRNAs and 903 DE mRNAs that shared miR response elements with 21 DE miRNAs. GO analysis demonstrated the multiple roles of the circRNAs enriched in EHI with circRNA-associated-ceRNA networks, such as immune response, inflammatory response and defense responses to virus, 67 circRNAs were revealed to be potentially involved in HIV-1 replication through regulating the expression of CCNK, CDKN1A and IL-15.
Conclusions
This study, for the first time, revealed a large circRNA profile and complex pathogenesis roles of circRNAs in EHI. A group of enriched circRNAs and associated circRNA-associated-ceRNA networks might contribute to HIV replication regulation and provide novel potential targets for both the pathogenesis of EHI and antiviral therapy.
Journal Article
Time-Resolved Luminescence Properties of Laser-Fabricated Nano-diamonds
2020
In the study, well-crystallized nano-diamonds with an average size of 3.8 nm are obtained via femtosecond laser ablation. Both steady-state and transient luminescence are observed. The luminescence peaks of nano-diamonds shift from 380 to 495 nm when the excitation wavelength changes from 280 to 420 nm. After passivation by polyethylene glycol-400N, the surface of nano-diamonds is significantly oxidized, which is verified by Raman and UV-Vis absorption spectra. Furthermore, there is no change in all the luminescence wavelengths, although the maximum intensity increases by 10 times. Time-resolved luminescence spectra reveal that trapping states can be modified by surface passivation, and this leads to stronger luminescence with a longer lifetime.
Journal Article
Immune Suppression, Preexisting Immunity, and Mutation Tendency Shaped SARS-CoV-2 Evolution in Persistent Infection
by
Zhu, Zheming
,
An, Minghui
,
Feng, Yonghui
in
Antiviral drugs
,
At risk populations
,
Complications
2025
SARS-CoV-2 evolution in persistent infection, which may induce long COVID-19, is predominantly manifested in immunocompromised hosts, who act as the viral reservoirs for future outbreaks. Therefore, understanding the evolutionary mechanisms of novel variants that can evade preexisting immune responses is critical to guide public health measures and develop vaccines tailored for vulnerable populations. We used next-generation sequencing and phylogenetic methods to delineate the evolutionary and mutational profiles of SARS-CoV-2 variants using serial oropharyngeal swab samples from 5 individuals with persistent infections. Our results revealed that the intra-host evolutionary patterns of different variants varied significantly, and the evolutionary rate in 3 immunocompromised hosts was 20 times higher than in 2 other patients. These variations likely stem from differences in immune suppression status, the strength of preexisting immune responses, and the extent of error-generating mutations. There were 15 intra-host single-nucleotide variants (iSNVs) in the spike gene among at least two variants, suggesting convergent evolution. Although most new iSNVs do not reach fixation, some of them belong to lineage-defined mutations in variants of concern (VOCs) and recent variants of interest (VOIs). The observations indicate that persistent infections serve as sources for novel, potentially harmful variants, whereas the viral evolutionary dynamics are impacted by virological, immunological, and genetic factors. Thus, there is an urgent need for individualized monitoring and management of immunocompromised hosts to prevent outbreaks caused by the viral seeds generated from them and to study viral factors associated with post-acute COVID-19 sequelae.
Journal Article
Integrated analysis of lncRNA, miRNA and mRNA profiles reveals potential lncRNA functions during early HIV infection
by
Zhang, Hui
,
Zhang, Yue
,
Li, Hailong
in
Antiviral agents
,
Antiviral drugs
,
Biomedical and Life Sciences
2021
Background
Long noncoding RNAs (lncRNAs) can regulate gene expression in a
cis
-regulatory fashion or as “microRNA sponges”. However, the expression and functions of lncRNAs during early human immunodeficiency virus (HIV) infection (EHI) remain unclear.
Methods
3 HAART-naive EHI patients and 3 healthy controls (HCs) were recruited in this study to perform RNA sequencing and microRNA (miRNA) sequencing. The expression profiles of lncRNAs, mRNAs and miRNAs were obtained, and the potential roles of lncRNAs were analysed based on discovering lncRNA
cis
-regulatory target mRNAs and constructing lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on 175 lncRNA-associated differentially expressed (DE) mRNAs to investigate the potential functions of DE lncRNAs in ceRNA networks.
Results
A total of 242 lncRNAs, 1240 mRNAs and 21 mature known miRNAs were determined as differentially expressed genes in HAART-naive EHI patients compared to HCs. Among DE lncRNAs, 44 lncRNAs were predicted to overlap with 41 target mRNAs, and 107 lncRNAs might regulate their nearby DE mRNAs. Two DE lncRNAs might regulate their
cis
-regulatory target mRNAs
BTLA
and
ZAP70,
respectively, which were associated with immune activation. In addition, the ceRNA networks comprised 160 DE lncRNAs, 21 DE miRNAs and 175 DE mRNAs. Seventeen DE lncRNAs were predicted to regulate
HIF1A
and
TCF7L2,
which are involved in the process of HIV-1 replication. Twenty DE lncRNAs might share miRNA response elements (MREs) with
FOS
,
FOSB
and
JUN,
which are associated with both immune activation and HIV-1 replication.
Conclusions
This study revealed that lncRNAs might play a critical role in HIV-1 replication and immune activation during EHI. These novel findings are helpful for understanding of the pathogenesis of HIV infection and provide new insights into antiviral therapy.
Journal Article
First complete-genome documentation of HIV-1 intersubtype superinfection with transmissions of diverse recombinants over time to five recipients
by
Li, Dan
,
An, Minghui
,
Tian, Wen
in
Biology and Life Sciences
,
Breakpoints
,
Computer and Information Sciences
2021
Human immunodeficiency virus type 1 (HIV-1) recombinants in the world are believed to be generated through recombination between distinct HIV-1 strains among coinfection or superinfection cases. However, direct evidence to support transmission of HIV-1 recombinants from a coinfected/superinfected donor to putative recipient is lacking. Here, we report on the origin and evolutionary relationship between a set of recombinants from a CRF01_AE/CRF07_BC superinfected putative donor and diverse CRF01_AE/CRF07_BC recombinants from five putative recipients. Interviews on sociodemographic characteristics and sexual behaviors for these six HIV-1-infected men who have sex with men showed that they had similar ways of partner seeking: online dating sites and social circles. Phylogenetic and recombination analyses demonstrated that the near-full-length genome sequences from six patients formed a monophyletic cluster different from known HIV-1 genotypes in maximum likelihood phylogenetic trees, were all composed of CRF01_AE and CRF07_BC fragments with two common breakpoints on
env
, and shared 4–7 breakpoints with each other. Moreover, 3’ half-genomes of recombinant strains from five recipients had identical/similar recombinant structures with strains at longitudinal samples from the superinfected donor. Recombinants from the donor were paraphyletic, whereas five recipients were monophyletic or polyphyletic in the maximum clade credibility tree. Bayesian analyses confirmed that the estimated time to the most recent common ancestor (tMRCA) of CRF01_AE and CRF07_BC strains of the donor was 2009.2 and 2010.7, respectively, and all were earlier than the emergence of recombinants from five recipients. Our results demonstrated that the closely related unique recombinant forms of HIV-1 might be the descendent of a series of recombinants generated gradually in a superinfected patient. This finding highlights the importance of early initiation of antiretroviral therapy as well as tracing and testing of partners in patients with multiple HIV-1 infection.
Journal Article
Multiple third-generation recombinants formed by CRF55_01B and CRF07_BC in newly diagnosed HIV-1 infected patients in Shenzhen city, China
2024
In the evolution landscape of HIV, the coexistence of multiple subtypes has led to new, complex recombinants, posing public health challenges. CRF55_01B, first identified among MSM in Shenzhen, China, has spread rapidly across China. In this study, 47 plasma samples from newly diagnosed HIV-1 CRF55_01B patients in Shenzhen, of which the genotype was only identified by the routine HIV drug resistance test, were collected. Multiple gene regions were acquired using Sanger and next-generation sequencing methods, followed by the phylogenetic reconstruction, recombination breakpoint scanning, Bayesian molecular clock, and the prediction of coreceptors. From 47 samples, we found seven new unique recombinants formed by CRF55_01B and CRF07_BC, which shared similar breakpoints in certain gene regions and primarily utilized CCR5 receptors. All of the most recent common ancestors of subregions for these recombinants were estimated to be later than CRF55_01B and CRF07_BC, potentially suggesting they are the third-generation recombinants formed by CRF55_01B and CRF07_BC as parents. The continuous emergence of new recombinants highlights the increasing complexity of circulating strains in Shenzhen, and also suggests that subtype analysis using partial pol gene may lead to an overestimation of the major subtype strains and an underestimation of new complex HIV recombinants. Consequently, to effectively address and mitigate the complex HIV epidemic, there is an urgent need for expanded monitoring and the optimization of testing methodologies.
Journal Article
Natural polymorphisms in HIV-1 CRF01_AE strain and profile of acquired drug resistance mutations in a long-term combination treatment cohort in northeastern China
by
Sun, Zesong
,
An, Minghui
,
Wang, Lin
in
Algorithms
,
Anti-Retroviral Agents - therapeutic use
,
Antiretroviral agents
2020
Background
The impacts of genetic polymorphisms on drug resistance mutations (DRMs) among various HIV-1 subtypes have long been debated. In this study, we aimed to analyze the natural polymorphisms and acquired DRM profile in HIV-1 CRF01_AE-infected patients in a large first-line antiretroviral therapy (ART) cohort in northeastern China.
Methods
The natural polymorphisms of CRF01_AE were analyzed in 2034 patients from a long-term ART cohort in northeastern China. The polymorphisms in 105 treatment failure (TF) patients were compared with those in 1148 treatment success (TS) patients. The acquired DRM profile of 42 patients who experienced TF with tenofovir/lamivudine/efavirenz (TDF/3TC/EFV) treatment was analyzed by comparing the mutations at TF time point to those at baseline. The Stanford HIVdb algorithm was used to interpret the DRMs. Binomial distribution, McNemar test, Wilcoxon test and CorMut package were used to analyze the mutation rates and co-variation. Deep sequencing was used to analyze the evolutionary dynamics of co-variation.
Results
Before ART, there were significantly more natural polymorphisms of 31 sites on reverse transcriptase (RT) in CRF01_AE than subtype B HIV-1 (|Z value| ≥ 3), including five known drug resistance-associated sites (238, 118, 179, 103, and 40). However, only the polymorphism at site 75 was associated with TF (|Z value| ≥ 3). The mutation rate at 14 sites increased significantly at TF time point compared to baseline, with the most common DRMs comprising G190S/C, K65R, K101E/N/Q, M184 V/I, and V179D/I/A/T/E, ranging from 66.7 to 45.2%. Moreover, two unknown mutations (V75 L and L228R) increased by 19.0 and 11.9% respectively, and they were under positive selection (Ka/Ks > 1, log odds ratio [LOD] > 2) and were associated with several other DRMs (cKa/Ks > 1, LOD > 2). Deep sequencing of longitudinal plasma samples showed that L228R occurred simultaneously or followed the appearance of Y181C.
Conclusion
The high levels of natural polymorphisms in CRF01_AE had little impact on treatment outcomes. The findings regarding potential new CRF01_AE-specific minor DRMs indicate the need for more studies on the drug resistance phenotype of CRF01_AE.
Journal Article
Optimization of genetic distance threshold for inferring the CRF01_AE molecular network based on next-generation sequencing
2024
HIV molecular network based on genetic distance (GD) has been extensively utilized. However, the GD threshold for the non-B subtype differs from that of subtype B. This study aimed to optimize the GD threshold for inferring the CRF01_AE molecular network.
Next-generation sequencing data of partial CRF01_AE
sequences were obtained for 59 samples from 12 transmission pairs enrolled from a high-risk cohort during 2009 and 2014. The paired GD was calculated using the Tamura-Nei 93 model to infer a GD threshold range for HIV molecular networks.
2,019 CRF01_AE pol sequences and information on recent HIV infection (RHI) from newly diagnosed individuals in Shenyang from 2016 to 2019 were collected to construct molecular networks to assess the ability of the inferred GD thresholds to predict recent transmission events. When HIV transmission occurs within a span of 1-4 years, the mean paired GD between the sequences of the donor and recipient within the same transmission pair were as follow: 0.008, 0.011, 0.013, and 0.023 substitutions/site. Using these four GD thresholds, it was found that 98.9%, 96.0%, 88.2%, and 40.4% of all randomly paired GD values from 12 transmission pairs were correctly identified as originating from the same transmission pairs. In the real world, as the GD threshold increased from 0.001 to 0.02 substitutions/site, the proportion of RHI within the molecular network gradually increased from 16.6% to 92.3%. Meanwhile, the proportion of links with RHI gradually decreased from 87.0% to 48.2%. The two curves intersected at a GD of 0.008 substitutions/site.
A suitable range of GD thresholds, 0.008-0.013 substitutions/site, was identified to infer the CRF01_AE molecular transmission network and identify HIV transmission events that occurred within the past three years. This finding provides valuable data for selecting an appropriate GD thresholds in constructing molecular networks for non-B subtypes.
Journal Article
A Large-scale Survey of CRF55_01B from Men-Who-Have-Sex-with-Men in China: implying the Evolutionary History and Public Health Impact
The HIV-1 epidemic among men-who-have-sex-with-men (MSM) continues to expand in China, involving the co-circulation of several different lineages of HIV-1 strains, including subtype B and CRF01_AE. This expansion has created conditions that facilitate the generation of new recombinant strains. A molecular epidemiologic survey among MSM in 11 provinces/cities around China was conducted from 2008 to 2013. Based on
pol
nucleotide sequences, a total of 19 strains (1.95%) belonged to the CRF55_01B were identified from 975 MSM in 7 provinces, with the prevalence range from 1.5% to 12.5%. Near full length genome (NFLG) sequences from six epidemiologically-unlinked MSM were amplified for analyzing evolutionary history, an identical genome structure composed of CRF01_AE and subtype B with four unique recombination breakpoints in the
pol
region were identified. Bayesian molecular clock analyses for both CRF01_AE and B segments indicated that the estimated time of the most recent common ancestors of CRF55_01B was around the year 2000. Our study found CRF55_01B has spread throughout the most provinces with high HIV-1 prevalence and highlights the importance of continual surveillance of dynamic changes in HIV-1 strains, the emergence of new recombinants and the need for implementing effective prevention measures specifically targeting the MSM population in China.
Journal Article