Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Anandarajah Gabrial"
Sort by:
Higher cost of finance exacerbates a climate investment trap in developing economies
Finance is vital for the green energy transition, but access to low cost finance is uneven as the cost of capital differs substantially between regions. This study shows how modelled decarbonisation pathways for developing economies are disproportionately impacted by different weighted average cost of capital (WACC) assumptions. For example, representing regionally-specific WACC values indicates 35% lower green electricity production in Africa for a cost-optimal 2 °C pathway than when regional considerations are ignored. Moreover, policy interventions lowering WACC values for low-carbon and high-carbon technologies by 2050 would allow Africa to reach net-zero emissions approximately 10 years earlier than when the cost of capital reduction is not considered. A climate investment trap arises for developing economies when climate-related investments remain chronically insufficient. Current finance frameworks present barriers to these finance flows and radical changes are needed so that capital is more equitably distributed. Access to low cost finance is vital for developing economies’ transition to green energy. Here the authors show how modelled decarbonization pathways for developing economies are disproportionately impacted by different weighted average cost of capital (WACC) assumptions.
Land suitability for energy crops under scenarios of climate change and land‐use
Bioenergy is expected to play a critical role in climate change mitigation. Most integrated assessment models assume an expansion of agricultural land for cultivation of energy crops. This study examines the suitability of land for growing a range of energy crops on areas that are not required for food production, accounting for climate change impacts and conservation requirements. A global fuzzy logic model is employed to ascertain the suitable cropping areas for a number of sugar, starch and oil crops, energy grasses and short rotation tree species that could be grown specifically for energy. Two climate change scenarios are modelled (RCP2.6 and RCP8.5), along with two scenarios representing the land which cannot be used for energy crops due to forest and biodiversity conservation, food agriculture and urban areas. Results indicate that 40% of the global area currently suitable for energy crops overlaps with food land and 31% overlaps with forested or protected areas, highlighting hotspots of potential land competition risks. Approximately 18.8 million km2 is suitable for energy crops, to some degree, and does not overlap with protected, forested, urban or food agricultural land. Under the climate change scenario RCP8.5, this increases to 19.6 million km2 by the end of the century. Broadly, climate change is projected to decrease suitable areas in southern regions and increase them in northern regions, most notably for grass crops in Russia and China, indicating that potential production areas will shift northwards which could potentially affect domestic use and trade of biomass significantly. The majority of the land which becomes suitable is in current grasslands and is just marginally or moderately suitable. This study therefore highlights the vital importance of further studies examining the carbon and ecosystem balance of this potential land‐use change, energy crop yields in sub‐optimal soil and climatic conditions and potential impacts on livelihoods. Energy crops are expected to provide vital bioenergy feedstocks but where can they grow? High‐resolution global modelling shows the spatial distribution of land suitable for first and second generation energy crops. Results indicate hotspots for potential land competition with food and forests, and how the suitable areas evolve under scenarios of climate change and land‐use change.
A pathway design framework for national low greenhouse gas emission development strategies
The Paris Agreement introduces long-term strategies as an instrument to inform progressively more ambitious emission reduction objectives, while holding development goals paramount in the context of national circumstances. In the lead up to the twenty-first Conference of the Parties, the Deep Decarbonization Pathways Project developed mid-century low-emission pathways for 16 countries, based on an innovative pathway design framework. In this Perspective, we describe this framework and show how it can support the development of sectorally and technologically detailed, policy-relevant and country-driven strategies consistent with the Paris Agreement climate goal. We also discuss how this framework can be used to engage stakeholder input and buy-in; design implementation policy packages; reveal necessary technological, financial and institutional enabling conditions; and support global stocktaking and increasing of ambition.The Deep Decarbonization Pathways Project develops a framework to design low-emission development pathways. This Perspective discusses the framework and how it can support the development of national strategies to meet climate targets, as well as help achieve stakeholder engagement.
Assessment of Impacts of Climate Change on Hydropower-Dominated Power System—The Case of Ethiopia
The Ethiopia energy mix is dominated by hydro-generation, which is largely reliant on water resources and their availability. This article aims to examine the impacts of severe drought on electric power generation by developing a Drought Scenario. OSeMOSYS (an open source energy modelling tool) was used to perform the analyses. The results were then compared with an existing reference scenario called “New Policy Scenario”. The study looked at how power generation and CO2 emissions would be altered in the future if reservoir capacity was halved due to drought. Taking this into account, the renewable energy share decreased from its 90% in 2050 to 81% in 2065, which had been 98% to 89% in the case of New Policy Scenario. In another case, CO2 emissions also increased from 0.42 Mt CO2 in 2015 to 7.3 Mt CO2 in 2065, a 3.3 Mt CO2 increase as compared to the New Scenario. The results showed how a prolonged period of drought would reduce the river flows and lead to an energy transition that may necessitate the installation of other concurrent alternative power plants. The study suggested ways to approach energy mix, particularly for countries with hydro-dominated power generation and those experiencing drought.
Climate change impacts on the energy system: a review of trends and gaps
Major transformation of the global energy system is required for climate change mitigation. However, energy demand patterns and supply systems are themselves subject to climate change impacts. These impacts will variously help and hinder mitigation and adaptation efforts, so it is vital they are well understood and incorporated into models used to study energy system decarbonisation pathways. To assess the current state of understanding of this topic and identify research priorities, this paper critically reviews the literature on the impacts of climate change on the energy supply system, summarising the regional coverage of studies, trends in their results and sources of disagreement. We then examine the ways in which these impacts have been represented in integrated assessment models of the electricity or energy system.Studies tend to agree broadly on impacts for wind, solar and thermal power stations. Projections for impacts on hydropower and bioenergy resources are more varied. Key uncertainties and gaps remain due to the variation between climate projections, modelling limitations and the regional bias of research interests. Priorities for future research include the following: further regional impact studies for developing countries; studies examining impacts of the changing variability of renewable resources, extreme weather events and combined hazards; inclusion of multiple climate feedback mechanisms in IAMs, accounting for adaptation options and climate model uncertainty.
Modelling Socio-Environmental Sensitivities: How Public Responses to Low Carbon Energy Technologies Could Shape the UK Energy System
Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public’s socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).
Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador
This study presents a method to assess the sensitivity of hydropower generation to uncertain water resource availability driven by future climate change. A hydrology-electricity modelling framework was developed and applied to six rivers where 10 hydropower stations operate, which together represent over 85% of Ecuador’s installed hydropower capacity. The modelling framework was then forced with bias-corrected output from 40 individual global circulation model experiments from the Coupled Model Intercomparison Project 5 for the Representative Concentration Pathway 4.5 scenario. Impacts of changing climate on hydropower resource were quantified for 2071–2100 relative to a baseline period 1971–2000. Results show a wide annual average inflow range from + 277% to − 85% when individual climate experiments are assessed. The analysis also show that hydropower generation in Ecuador is highly uncertain and sensitive to climate change since variations in inflow to hydropower stations would directly result in changes in the expected hydropower potential. Annual hydroelectric power production in Ecuador is found to vary between − 55 and + 39% of the mean historical output when considering future inflow patterns to hydroelectric reservoirs covering one standard deviation of the CMIP5 RCP4.5 climate ensemble.
Mapping synergies and trade-offs between energy and the Sustainable Development Goals
The 2030 Agenda for Sustainable Development—including 17 interconnected Sustainable Development Goals (SDGs) and 169 targets—is a global plan of action for people, planet and prosperity. SDG7 calls for action to ensure access to affordable, reliable, sustainable and modern energy for all. Here we characterize synergies and trade-offs between efforts to achieve SDG7 and delivery of the 2030 Agenda as a whole. We identify 113 targets requiring actions to change energy systems, and published evidence of relationships between 143 targets (143 synergies, 65 trade-offs) and efforts to achieve SDG7. Synergies and trade-offs exist in three key domains, where decisions about SDG7 affect humanity’s ability to: realize aspirations of greater welfare and well-being; build physical and social infrastructures for sustainable development; and achieve sustainable management of the natural environment. There is an urgent need to better organize, connect and extend this evidence, to help all actors work together to achieve sustainable development. The UN’s Agenda for Sustainable Development has 17 goals with 169 targets for action across a range of issues, with access to sustainable energy for all being Goal 7. This Perspective analyses interlinkages between energy systems, Goal 7 and the other goals at the target level, identifying synergies and trade-offs between them.
Towards a low-carbon economy: scenarios and policies for the UK
This article analyses the implications of long-term low-carbon scenarios for the UK, and against these it assesses both the current status and the required scope of the UK energy policy. The scenarios are generated using the well-established MARKAL (acronym for MARKet ALlocation) UK energy systems model, which has already been extensively used for UK policy analysis and support. The scenarios incorporate different levels of ambition for carbon reduction, ranging from 40% to 90% cuts from 1990's level by the year 2050, to shed insights into the options for achieving the UK's current legally binding target of an 80% cut by the same date. The scenarios achieve their carbon reductions through very different combinations of demand reduction (implying behaviour change) and implementation of low-carbon and energy efficiency technologies on both the supply and demand sides. In all cases, however, the costs of achieving the reductions are relatively modest. The ensuing policy analysis suggests that while the cuts are feasible both technically and economically and while a number of new policies have been introduced in order to achieve them, it is not yet clear whether these policies will deliver the required combination of both short- and long-term technology deployment, and behaviour change for the UK Government's targets to be achieved.