Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Andelfinger, Gregor"
Sort by:
Loss of Gata5 in mice leads to bicuspid aortic valve
Bicuspid aortic valve (BAV), the leading congenital heart disease, occurs in 1%-2% of the population. Genetic studies suggest that BAV is an autosomal-dominant disease with reduced penetrance. However, only 1 gene, NOTCH1, has been linked to cases of BAV. Here, we show that targeted deletion of Gata5 in mice leads to hypoplastic hearts and partially penetrant BAV formation. Endocardial cell-specific inactivation of Gata5 led to BAV, similar to that observed in Gata5-/- mice. In all cases, the observed BAVs resulted from fusion of the right-coronary and noncoronary leaflets, the subtype associated with the more severe valve dysfunction in humans. Neither endocardial cell proliferation nor cushion formation was altered in the absence of Gata5. Rather, defective endocardial cell differentiation, resulting from the deregulation of several components of the Notch pathway and other important endocardial cell regulators, may be the underlying mechanism of disease. The results unravel a critical cell-autonomous role for endocardial Gata5 in aortic valve formation and identify GATA5 as a potential gene responsible for congenital heart disease in humans. Mice with mutated Gata5 alleles represent unique models to dissect the mechanisms underlying degenerative aortic valve disease and to develop much-needed preventive and therapeutic interventions.
eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity
The roles of nitric oxide (NO) and endothelial NO synthase (eNOS) in the regulation of angiogenesis are well documented. However, the involvement of eNOS in the sprouting of endothelial tip-cells at the vascular front during sprouting angiogenesis remains poorly defined. In this study, we show that downregulation of eNOS markedly inhibits VEGF-stimulated migration of endothelial cells but increases their polarization, as evidenced by the reorientation of the Golgi in migrating monolayers and by the fewer filopodia on tip cells at ends of sprouts in endothelial cell spheroids. The effect of eNOS inhibition on EC polarization was prevented in Par3-depleted cells. Importantly, downregulation of eNOS increased the expression of polarity genes, such as PARD3B, PARD6A, PARD6B, PKCΖ, TJP3, and CRB1 in endothelial cells. In retinas of eNOS knockout mice, vascular development is retarded with decreased vessel density and vascular branching. Furthermore, tip cells at the extremities of the vascular front have a marked reduction in the number of filopodia per cell and are more oriented. In a model of oxygen-induced retinopathy (OIR), eNOS deficient mice are protected during the initial vaso-obliterative phase, have reduced pathological neovascularization, and retinal endothelial tip cells have fewer filopodia. Single-cell RNA sequencing of endothelial cells from OIR retinas revealed enrichment of genes related to cell polarity in the endothelial tip-cell subtype of eNOS deficient mice. These results indicate that inhibition of eNOS alters the polarity program of endothelial cells, which increases cell polarization, regulates sprouting angiogenesis and normalizes pathological neovascularization during retinopathy.
Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel
Endogenous cardiac pacemaker function regulates the rate and rhythm of cardiac contraction. The mutation p.Lys23Glu in the cohesin protein Shugoshin-1 causes severe heart arrhythmias due to sinoatrial node dysfunction and a debilitating gastrointestinal motility disorder, collectively termed the Chronic Atrial and Intestinal Dysrhythmia Syndrome, linking Shugoshin-1 and pacemaker activity. Hyperpolarization-activated, cyclic nucleotide-gated cation channel 4 (HCN4) is the predominant pacemaker ion-channel in the adult heart and carries the majority of the “funny” current, which strongly contributes to diastolic depolarization in pacemaker cells. Here, we study the mechanism by which Shugoshin-1 affects cardiac pacing activity with two cell models: neonatal rat ventricular myocytes and Chronic Atrial and Intestinal Dysrhythmia Syndrome patient-specific human induced pluripotent stem cell derived cardiomyocytes. We find that Shugoshin-1 interacts directly with HCN4 to promote and stabilize cardiac pacing. This interaction enhances funny-current by optimizing HCN4 cell-surface expression and function. The clinical p.Lys23Glu mutation leads to an impairment in the interaction between Shugoshin-1 and HCN4, along with depressed funny-current and dysrhythmic activity in induced pluripotent stem cell derived cardiomyocytes derived from Chronic Atrial and Intestinal Dysrhythmia Syndrome patients. Our work reveals a critical non-canonical, cohesin-independent role for Shugoshin-1 in maintaining cardiac automaticity and identifies potential therapeutic avenues for cardiac pacemaking disorders, in particular Chronic Atrial and Intestinal Dysrhythmia Syndrome. A mutation in Shugoshin-1 causes the Chronic Atrial and Intestinal Dysrhythmia (CAID) Syndrome, but the underlying mechanisms are unknown. Here, the authors show that Shugoshin-1 controls cardiac pacemaker activity by interacting with HCN4 to enhance its cell-surface expression, and that the CAID-Syndrome mutation disrupts cardiac pacemaking by interfering with this important non-canonical interaction.
R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma
Propranolol is an approved non-selective β-adrenergic blocker that is first line therapy for infantile hemangioma. Despite the clinical benefit of propranolol therapy in hemangioma, the mechanistic understanding of what drives this outcome is limited. Here, we report successful treatment of pericardial edema with propranolol in a patient with Hypotrichosis-Lymphedema-Telangiectasia and Renal (HLTRS) syndrome, caused by a mutation in SOX18. Using a mouse pre-clinical model of HLTRS, we show that propranolol treatment rescues its corneal neo-vascularisation phenotype. Dissection of the molecular mechanism identified the R(+)-propranolol enantiomer as a small molecule inhibitor of the SOX18 transcription factor, independent of any anti-adrenergic effect. Lastly, in a patient-derived in vitro model of infantile hemangioma and pre-clinical model of HLTRS we demonstrate the therapeutic potential of the R(+) enantiomer. Our work emphasizes the importance of SOX18 etiological role in vascular neoplasms, and suggests R(+)-propranolol repurposing to numerous indications ranging from vascular diseases to metastatic cancer.
Maximal cardiopulmonary exercise testing in childhood acute lymphoblastic leukemia survivors exposed to chemotherapy
PurposeThe purpose of this study was to demonstrate if childhood acute lymphoblastic leukemia (ALL) survivors exposed to chemotherapy (i.e., doxorubicin) are able to achieve a safe maximal cardiopulmonary exercise test (CPET).MethodsA total of 250 childhood ALL survivors were eligible to undergo a CPET on ergocycle. Analyses were performed in 216 survivors and stratified in regard to their prognostic risk groups: 99 survivors (55 males and 44 females) at standard risk and 117 survivors (56 males and 61 females) at high risk.ResultsResults showed that 100% (n = 216) of survivors completed a maximal CPET confirmed by the achievement of two out of three of the following criteria: 197 survivors (91.2%) reached a peak RER value of ≥ 1.15, 197 survivors (91.2%) reached a RPE score > 7, and 210 survivors (97.2%) reached a maximal heart rate ≥ 85% of the predicted value. Linear regression analysis showed a significant association between the survivors’ cumulative dose of doxorubicin and their VO2 peak measured. Two non-fatal adverse events were observed and reported at the end of the maximal CPET, while non-fatal adverse events were reported in 5 survivors during the recovery period. None of these events resulted in a long-term complication.ConclusionChildhood ALL survivors with prior exposure to chemotherapy can achieve a safe maximal CPET. They were able of achieving a maximal exercise test without being limited by symptoms, potential overprotection, or musculoskeletal issues. Thus, it should be the norm to realize a CPET prior a physical activity program to propose an optimal prescription. This study provides important information regarding the maximal physiological parameters that childhood ALL survivors are able to reach and have important clinical implications in the exercise and oncology field for this population of survivors.
Clearance of defective muscle stem cells by senolytics restores myogenesis in myotonic dystrophy type 1
Muscle stem cells, the engine of muscle repair, are affected in myotonic dystrophy type 1 (DM1); however, the underlying molecular mechanism and the impact on the disease severity are still elusive. Here, we show using patients’ samples that muscle stem cells/myoblasts exhibit signs of cellular senescence in vitro and in situ. Single cell RNAseq uncovers a subset of senescent myoblasts expressing high levels of genes related to the senescence-associated secretory phenotype (SASP). We show that the levels of interleukin-6, a prominent SASP cytokine, in the serum of DM1 patients correlate with muscle weakness and functional capacity limitations. Drug screening revealed that the senolytic BCL-XL inhibitor (A1155463) can specifically remove senescent DM1 myoblasts by inducing their apoptosis. Clearance of senescent cells reduced the expression of SASP, which rescued the proliferation and differentiation capacity of DM1 myoblasts in vitro and enhanced their engraftment following transplantation in vivo. Altogether, this study identifies the pathogenic mechanism associated with muscle stem cell defects in DM1 and opens a therapeutic avenue that targets these defective cells to restore myogenesis. Muscle stem cells drive muscle regeneration and are affected in myotonic dystrophy type 1. Here, the authors demonstrate that some muscle stem cells show signs of senescence in myotonic dystrophy type 1 and administer senolytics to eliminate these defective cells and restore myogenesis.
Metabolic reprogramming of the neovascular niche promotes regenerative angiogenesis in proliferative retinopathy
Healthy blood vessels supply neurons to preserve metabolic function. In blinding proliferative retinopathies (PRs), pathological neovascular tufts often emerge in lieu of needed physiological revascularization. Here we show that metabolic shifts in the neovascular niche define angiogenic fate. Fatty acid oxidation (FAO) metabolites accumulated in human and murine retinopathy samples. Neovascular tufts with a distinct single-cell transcriptional signature highly expressed FAO enzymes. The deletion of Sirt3 , an FAO regulator, shifted the neovascular niche metabolism from FAO to glycolysis and suppressed tuft formation. This metabolic transition increased Vegf expression in astrocytes and reprogrammed pathological neovessels to a physiological phenotype, hastening vascular regeneration of the ischemic retina and improving vision. Hence, strategies to change the metabolic environment of vessels could promote a regenerative phenotype in vascular diseases. In proliferative retinopathies, pathological vessels replace healthy ones, impairing vision. Here, the authors show that reprogramming the metabolic environment of retinal blood vessels from fatty acid oxidation to glycolysis promotes healthy revascularization and improves vision in proliferative retinopathy.
Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice
Liposarcoma is an often fatal cancer of fat cells. Mechanisms of liposarcoma development are incompletely understood. The cleavage of fatty acids from acylglycerols (lipolysis) has been implicated in cancer. We generated mice with adipose tissue deficiency of two major enzymes of lipolysis, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), encoded respectively by Pnpla2 and Lipe. Adipocytes from double adipose knockout (DAKO) mice, deficient in both ATGL and HSL, showed near-complete deficiency of lipolysis. All DAKO mice developed liposarcoma between 11 and 14 months of age. No tumors occurred in single knockout or control mice. The transcriptome of DAKO adipose tissue showed marked differences from single knockout and normal controls as early as 3 months. Gpnmb and G0s2 were among the most highly dysregulated genes in premalignant and malignant DAKO adipose tissue, suggesting a potential utility as early markers of the disease. Similar changes of GPNMB and G0S2 expression were present in a human liposarcoma database. These results show that a previously-unknown, fully penetrant epistatic interaction between Pnpla2 and Lipe can cause liposarcoma in mice. DAKO mice provide a promising model for studying early premalignant changes that lead to late-onset malignant disease.
Family Based Whole Exome Sequencing Reveals the Multifaceted Role of Notch Signaling in Congenital Heart Disease
Left-ventricular outflow tract obstructions (LVOTO) encompass a wide spectrum of phenotypically heterogeneous heart malformations which frequently cluster in families. We performed family based whole-exome and targeted re-sequencing on 182 individuals from 51 families with multiple affected members. Central to our approach is the family unit which serves as a reference to identify causal genotype-phenotype correlations. Screening a multitude of 10 overlapping phenotypes revealed disease associated and co-segregating variants in 12 families. These rare or novel protein altering mutations cluster predominantly in genes (NOTCH1, ARHGAP31, MAML1, SMARCA4, JARID2, JAG1) along the Notch signaling cascade. This is in line with a significant enrichment (Wilcoxon, p< 0.05) of variants with a higher pathogenicity in the Notch signaling pathway in patients compared to controls. The significant enrichment of novel protein truncating and missense mutations in NOTCH1 highlights the allelic and phenotypic heterogeneity in our pediatric cohort. We identified novel co-segregating pathogenic mutations in NOTCH1 associated with left and right-sided cardiac malformations in three independent families with a total of 15 affected individuals. In summary, our results suggest that a small but highly pathogenic fraction of family specific mutations along the Notch cascade are a common cause of LVOTO.
The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis
The mechanisms that control blood vessel formation are incompletely understood. Sylvain Chemtob and his colleagues now find that blood vessel formation in mouse and rat retinas is controlled by succinate generated during hypoxic and ischemic conditions. Succinate acting through its receptor, GPR91, on retinal ganglion neurons, triggers secretion of canonical proangiogenic factors and the formation of new blood vessels to reinstate adequate tissue supply. This work also identifies GPR91 as a potential therapeutic target for the treatment of ischemic retinopathies. Vascularization is essential for tissue development and in restoration of tissue integrity after an ischemic injury. In studies of vascularization, the focus has largely been placed on vascular endothelial growth factor (VEGF), yet other factors may also orchestrate this process. Here we show that succinate accumulates in the hypoxic retina of rodents and, via its cognate receptor G protein–coupled receptor-91 (GPR91), is a potent mediator of vessel growth in the settings of both normal retinal development and proliferative ischemic retinopathy. The effects of GPR91 are mediated by retinal ganglion neurons (RGCs), which, in response to increased succinate levels, regulate the production of numerous angiogenic factors including VEGF. Accordingly, succinate did not have proangiogenic effects in RGC-deficient rats. Our observations show a pathway of metabolite signaling where succinate, acting through GPR91, governs retinal angiogenesis and show the propensity of RGCs to act as sensors of ischemic stress. These findings provide a new therapeutic target for modulating revascularization.