Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
107 result(s) for "Andersen, Mie"
Sort by:
Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine
Sleep has a complex micro-architecture, encompassing micro-arousals, sleep spindles and transitions between sleep stages. Fragmented sleep impairs memory consolidation, whereas spindle-rich and delta-rich non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep promote it. However, the relationship between micro-arousals and memory-promoting aspects of sleep remains unclear. In this study, we used fiber photometry in mice to examine how release of the arousal mediator norepinephrine (NE) shapes sleep micro-architecture. Here we show that micro-arousals are generated in a periodic pattern during NREM sleep, riding on the peak of locus-coeruleus-generated infraslow oscillations of extracellular NE, whereas descending phases of NE oscillations drive spindles. The amplitude of NE oscillations is crucial for shaping sleep micro-architecture related to memory performance: prolonged descent of NE promotes spindle-enriched intermediate state and REM sleep but also associates with awakenings, whereas shorter NE descents uphold NREM sleep and micro-arousals. Thus, the NE oscillatory amplitude may be a target for improving sleep in sleep disorders.Kjaerby and Andersen et al. show that norepinephrine (NE) plays profound roles in shaping sleep micro-architecture. NE slowly oscillates during sleep, with NE oscillatory amplitude being a major determinant of spindle-dependent memory consolidation and awakenings.
Astrocytic chloride is brain state dependent and modulates inhibitory neurotransmission in mice
Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl − ) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl − reservoir regulating Cl − homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl − ] i ) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl − ] i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl − ] i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl − available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity. Astrocytes act as a dynamic Cl − reservoir regulating Cl − homeostasis in the CNS. Astrocytic Cl − is high and stable during sleep, it is lower during wakefulness and fluctuates in response to sensory input and motor activity. Efflux of Cl − from astrocytes supports inhibitory transmission in the CNS.
Revelations of the d band
The d -band model was proposed by Bjørk Hammer and Jens Nørskov almost 30 years ago to explain trends in the interaction of adsorbates with transition-metal surfaces. It remains a cornerstone in heterogeneous catalysis research and has inspired a wealth of later models.
Inverse catalysts: tuning the composition and structure of oxide clusters through the metal support
Computational modeling of metal–oxide interfaces is challenging due to the large search space of compositions and structures and the complexity of catalyst materials under operating conditions in general. In this work, we develop an efficient structure search workflow to discover chemically unique and relevant nanocluster geometries of inverse catalysts and apply it to Zn y O x and In y O x on Cu(111), Pd(111), and Au(111). We show that the workflow is successful in obtaining a large range of chemically distinct structures. Structural geometry trends are identified, including stable motifs such as tripod, rhombus, and pyramidal motifs. Using ab initio thermodynamics, we explore the in situ stability of the structures, including single-atom alloys, at a range of oxygen availabilities. This approach allows us to find trends such as the susceptibility to oxidation of the different systems and the range of stability of different cluster motifs. Our analysis highlights the importance of taking the diversity of sites exposed by metal–oxide interfaces into account in catalyst design studies.
IGF1 and IGF2 specificities to the two insulin receptor isoforms are determined by insulin receptor amino acid 718
Alanine scan of insulin receptor (IR)-B exon 11 and site-directed mutagenesis of amino acid 718 in human IR-A and IR-B were performed. Ligand affinities to wild type and mutated receptors were studied by displacement of radioactive insulin in binding assay on secreted soluble midi receptors or solubilized semi-purified full length receptors stably expressed in Baby Hamster Kidney cells. Phosphorylation of IR in response to insulin, IGF1 and IGF2 was measured using ELISA. Insulin, insulin detemir and insulin glargine maximally showed two fold differences in affinity for human IR-A and IR-B, but IGF1 and IGF2 had up to 10 fold preference for IR-A. Alanine scan of exon 11 revealed that position 718 is important for low IGF1 affinity to IR-B. Mutational analysis of amino acid residue 718 in IR-A and IR-B demonstrated that charge is important for IGF1 and IGF2 affinity but not important for insulin affinity. The affinity of IGF1 and IGF2 for the mutant IR-A P718K was comparable to the wild type IR-B whereas the affinity of IGF1 and IGF2 for the mutant IR-B K718P was comparable to the wild type IR-A. Changes in affinity were also reflected in the IR activation pattern. Mutating position 718 in human IR-B to the proline found at position 718 in human IR-A increased IGF1 and IGF2 affinity to a level comparable to IR-A and mutating position 718 in IR-A to the lysine found at position 718 in IR-B decreased IGF1 and IGF2 affinity to a level comparable to IR-B, whereas a negatively charged glutamate did not. These changes in the affinities were also reflected in the IR phosphorylation pattern, meaning that position 718 is important for both affinity and activation of the receptor. It should be emphasized that none of the mutations affected insulin affinity, indicating that the mutations did not alter the overall receptor structure and that the effect is ligand specific.
‘I Dare to Be Myself.’ The Value of Peer Communities in Adapted Physical Activity Interventions for Young People and Adults with Cerebral Palsy
Rehabilitation for people with cerebral palsy has traditionally focused on the physical body. This study has a psychosocial focus and investigates the experience of being part of a peer community at a camp. Two semi-structured interviews with 16 participants were carried out. The first interview aimed at getting a sense of the participants and their life situation, and the second at getting a sense of their experiences at camp. Seven themes were identified in the thematic analysis: belonging, social security, group-synergy, symmetry in abilities, being a resource, being understood, and left alone in the period after camp. The findings indicate that peer communities for people with cerebral palsy can improve their self-perception and situated participation. Therefore, clinical recommendations and strategies should consider including peer communities. However, we must be aware of the transition from segregated interventions to everyday life, as this process may be difficult and inhibit the potential. Keywords: Disability, Sports camp, Peers, Social community, Rehabilitation
Graphene at Liquid Copper Catalysts: Atomic‐Scale Agreement of Experimental and First‐Principles Adsorption Height
Liquid metal catalysts have recently attracted attention for synthesizing high‐quality 2D materials facilitated via the catalysts’ perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic‐level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 Å between experiment and theory. The results are obtained via in situ synchrotron X‐ray reflectivity (XRR) measurements over wide‐range q‐vectors and large‐scale molecular dynamics simulations based on efficient machine‐learning (ML) potentials trained to first‐principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu(111). Transporting the predictive first‐principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces. A quantitative atomic‐scale understanding of liquid metal catalysts is important for the high‐quality synthesis of graphene. Using machine‐learning potentials trained to density functional theory data, the authors achieve sub‐angstrom agreement to the experimentally determined graphene adsorption height on liquid Cu. This work draws a path for the use of reliable potentials as a multiscale modeling technique to explore unchartered problems.
Machine learning speeds up search for surface structure
It is difficult to identify stable surface reconstructions of complex materials. Now a Monte Carlo sampling strategy is coupled with a machine learning interatomic potential that is iteratively improved via active learning during the search.
Synthesis, Structure and Mg2+ Ionic Conductivity of Isopropylamine Magnesium Borohydride
The discovery of new inorganic magnesium electrolytes may act as a foundation for the rational design of novel types of solid-state batteries. Here we investigated a new type of organic-inorganic metal hydride, isopropylamine magnesium borohydride, Mg(BH4)2∙(CH3)2CHNH2, with hydrophobic domains in the solid state, which appear to promote fast Mg2+ ionic conductivity. A new synthetic strategy was designed by combination of solvent-based methods and mechanochemistry. The orthorhombic structure of Mg(BH4)2∙(CH3)2CHNH2 was solved ab initio by the Rietveld refinement of synchrotron X-ray powder diffraction data and density functional theory (DFT) structural optimization in space group I212121 (unit cell, a = 9.8019(1) Å, b = 12.1799(2) Å and c = 17.3386(2) Å). The DFT calculations reveal that the three-dimensional structure may be stabilized by weak dispersive interactions between apolar moieties and that these may be disordered. Nanoparticles and heat treatment (at T > 56 °C) produce a highly conductive composite, σ(Mg2+) = 2.86 × 10−7, and 2.85 × 10−5 S cm−1 at −10 and 40 °C, respectively, with a low activation energy, Ea = 0.65 eV. Nanoparticles stabilize the partially eutectic molten state and prevent recrystallization even at low temperatures and provide a high mechanical stability of the composite.