Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
328
result(s) for
"Anderson, Deborah M"
Sort by:
Transovarial transmission of Yersinia pestis in its flea vector Xenopsylla cheopis
2024
Yersinia pestis
, the causative agent of plague, is endemic in certain regions due to a stable transmission cycle between rodents and their associated fleas. In addition, fleas are believed to serve as reservoirs that can occasionally cause enzootic plague cycles and explosive epizootic outbreaks that increase human exposure. However, transmission by fleas is inefficient and associated with a shortened lifespan of the flea and rodent hosts, indicating that there remain significant gaps in our understanding of the vector-animal cycle of
Y. pestis
. Here, we show that laboratory-reared, infected fleas (
Xenopsylla cheopis
) can transmit viable
Y. pestis
from adults to eggs, and the bacteria can be passed through all subsequent life stages of the flea. Thus, our data raise the possibility that transovarial transmission in fleas might contribute to the persistence of
Y. pestis
in the environment without detectable plague activity in mammals.
Yersinia pestis
, the causative agent of plague, is endemic in certain regions due to a stable transmission cycle between rodents and their fleas. Here, Pauling et al. provide evidence for vertical transmission of plague bacteria in fleas, from adults to eggs and through all subsequent life stages, suggesting this might contribute to
Y. pestis
persistence in the environment without plague activity in mammals.
Journal Article
Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model
2019
Yersinia pestis is the causative agent of pneumonic plague, a disease involving uncontrolled bacterial growth and host immunopathology. Secondary septicemic plague commonly occurs as a consequence of the host inflammatory response that causes vasodilation and vascular leakage, which facilitates systemic spread of the bacteria and the colonization of secondary tissues. The mortality rates of pneumonic and septicemic plague are high even when antibiotics are administered. In this work, we show that primary pneumonic or secondary septicemic plague can be preferentially modeled in mice by varying the volume used for intranasal delivery of Y. pestis. Low volume intranasal challenge (10μL) of wild type Y. pestis resulted in a high frequency of lethal secondary septicemic plague, with a low degree of primary lung infection and rapid development of sepsis. In contrast, high volume intranasal challenge (30μL) yielded uniform early lung infection and primary disease and a significant increase in lethality. In a commonly used BSL2 model, high volume challenge with Y. pestis lacking the pigmentation locus (pgm-) gave 105-fold greater deposition compared to low volume challenge, yet moribund mice did not develop severe lung disease and there was no detectable difference in lethality. These data indicate the primary cause of death of mice in the BSL2 model is sepsis regardless of intranasal dosing method. Overall, these findings allow for the preferential modeling of pneumonic or septicemic plague by intranasal dosing of mice with Y. pestis.
Journal Article
Cost savings associated with timely treatment of botulism with botulism antitoxin heptavalent product
2019
Botulism is a rare, serious, and sometimes fatal paralytic illness caused by exposure to neurotoxins produced by Clostridium botulinum bacteria. Patients with documented or suspected exposure to botulinum toxin serotypes A-G can be treated with BAT® [Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)-(Equine)] product, which was approved in 2013 in the United States (US). Patients with botulism have demonstrated greater clinical benefit with early BAT product treatment (≤2 days from symptom onset) versus late treatment (>2 days).
Economic outcomes associated with improved clinical outcome benefits of BAT product treatment have not yet been reported. This ad hoc analysis aimed to estimate and compare costs associated with hospitalization, intensive care unit stay, and mechanical ventilation for patients with botulism administered BAT product treatment early or late.
Clinical outcomes data for early and late BAT product treatment were obtained from a patient registry conducted between October 2014 and July 2017. Total per patient mean daily costs were estimated based on information from published literature. Total population costs per group were calculated by multiplying estimated mean cost per patient by the average annual number of non-infant botulism cases in the US.
Mean per patient costs were 2.5 times lower for patients treated with BAT product early versus late. On average in the US, early BAT product treatment could save greater than $3.9 million per year versus late treatment.
Substantial economic savings can be achieved with early BAT product treatment. The findings support the recommendation for public health authorities to ensure antitoxin treatment is readily available in sufficient quantities to manage botulism cases, including sporadic outbreaks and potential mass exposure biological attacks.
Journal Article
Integrative analysis highlights molecular and immune responses of tick Amblyomma americanum to Escherichia coli challenge
2023
Ticks are ectoparasites that can transmit various pathogens capable of causing life-threatening illnesses in people and animals, making them a severe public health threat. Understanding how ticks respond to bacterial infection is crucial for deciphering their immune defense mechanisms and identifying potential targets for controlling tick-borne diseases. In this study, an in-depth transcriptome analysis was used to investigate the molecular and immune responses of Amblyomma americanum to infection caused by the microinjection of Escherichia coli . With an abundance of differentially expressed genes discovered at different times, the analysis demonstrated significant changes in gene expression profiles in response to E. coli challenge. Notably, we found alterations in crucial immune markers, including the antimicrobial peptides defensin and microplusin, suggesting they may play an essential role in the innate immune response. Furthermore, KEGG analysis showed that following E. coli exposure, a number of key enzymes, including lysosomal alpha-glucosidase, fibroblast growth factor, legumain, apoptotic protease-activating factor, etc., were altered, impacting the activity of the lysosome, mitogen-activated protein kinase, antigen processing and presentation, bacterial invasion, apoptosis, and the Toll and immune deficiency pathways. In addition to the transcriptome analysis, we constructed protein interaction networks to elucidate the molecular interactions underlying the tick’s response to E. coli challenge. Hub genes were identified, and their functional enrichment provided insights into the regulation of cytoskeleton rearrangement, apoptotic processes, and kinase activity that may occur in infected cells. Collectively, the findings shed light on the potential immune responses in A. americanum that control E. coli infection.
Journal Article
Use of Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)—(Equine) (BAT®) in Clinical Study Subjects and Patients: A 15-Year Systematic Safety Review
by
Anderson, Deborah M.
,
Richardson, Jason S.
,
Hall, Christine L.
in
Anaphylaxis
,
Antitoxins
,
BAT product
2021
Botulism is a rare, sometimes fatal paralytic illness caused by botulinum neurotoxins. BAT® (Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)—(Equine)) is an equine-derived heptavalent botulinum antitoxin indicated for the treatment of symptomatic botulism in adult and pediatric patients. This review assesses the cumulative safety profile for BAT product from 2006 to 2020, using data received from clinical studies, an expanded-access program, a post-licensure registry, spontaneous and literature reports. The adverse event (AE) incidence rate for BAT product was calculated conservatively using only BAT product exposures for individuals with a record (512) and was alternatively estimated using all BAT product exposure data, including post-licensure deployment information (1128). The most frequently reported BAT product-related AEs occurring in greater than 1% of the 512–1128 BAT product-exposed individuals were hypersensitivity, pyrexia, tachycardia, bradycardia, anaphylaxis, and blood pressure increase reported in 2.3–5.1%, 1.8–3.9%, 1.0–2.2%, 0.89–2.0%, 0.62–1.4%, and 0.62–1.4%, respectively. For patients properly managed in an intensive care setting, the advantages of BAT product appear to outweigh potential risks in patients due to morbidity and mortality of botulism. AEs of special interest, including bradycardia, hemodynamic instability, hypersensitivity, serum sickness, and febrile reactions in the registry, were specifically solicited.
Journal Article
Equine Polyclonal Antibodies Prevent Acute Chikungunya Virus Infection in Mice
by
Nykiforuk, Cory
,
Dagley, Ashley
,
Barker, Douglas
in
Analysis
,
Animal models
,
Antiarthritic agents
2023
Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen that causes chikungunya disease (CHIK); the disease is characterized by fever, muscle ache, rash, and arthralgia. This arthralgia can be debilitating and long-lasting, seriously impacting quality of life for years. Currently, there is no specific therapy available for CHIKV infection. We have developed a despeciated equine polyclonal antibody (CHIKV-EIG) treatment against CHIKV and evaluated its protective efficacy in mouse models of CHIKV infection. In immunocompromised (IFNAR−/−) mice infected with CHIKV, daily treatment for five consecutive days with CHIKV-EIG administered at 100 mg/kg starting on the day of infection prevented mortality, reduced viremia, and improved clinical condition as measured by body weight loss. These beneficial effects were seen even when treatment was delayed to 1 day after infection. In immunocompetent mice, CHIKV-EIG treatment reduced virus induced arthritis (including footpad swelling), arthralgia-associated cytokines, viremia, and tissue virus loads in a dose-dependent fashion. Collectively, these results suggest that CHIKV-EIG is effective at preventing CHIK and could be a viable candidate for further development as a treatment for human disease.
Journal Article
Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis
by
Bland, David M.
,
Houppert, Andrew S.
,
Earl, Shaun C.
in
Animals
,
Antiinfectives and antibacterials
,
Antimicrobial agents
2015
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.
Journal Article
Early Apoptosis of Macrophages Modulated by Injection of Yersinia pestis YopK Promotes Progression of Primary Pneumonic Plague
by
Hughes Hanks, Jennifer M.
,
Anderson, Deborah M.
,
Peters, Kristen N.
in
Animals
,
Apoptosis
,
Apoptosis Regulatory Proteins - genetics
2013
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells.
Journal Article
Opposing Roles for Interferon Regulatory Factor-3 (IRF-3) and Type I Interferon Signaling during Plague
by
Lee-Lewis, Hanni
,
Anderson, Deborah M.
,
Hughes-Hanks, Jennifer
in
Animals
,
Bacterial diseases
,
Bacterial infections
2012
Type I interferons (IFN-I) broadly control innate immunity and are typically transcriptionally induced by Interferon Regulatory Factors (IRFs) following stimulation of pattern recognition receptors within the cytosol of host cells. For bacterial infection, IFN-I signaling can result in widely variant responses, in some cases contributing to the pathogenesis of disease while in others contributing to host defense. In this work, we addressed the role of type I IFN during Yersinia pestis infection in a murine model of septicemic plague. Transcription of IFN-β was induced in vitro and in vivo and contributed to pathogenesis. Mice lacking the IFN-I receptor, Ifnar, were less sensitive to disease and harbored more neutrophils in the later stage of infection which correlated with protection from lethality. In contrast, IRF-3, a transcription factor commonly involved in inducing IFN-β following bacterial infection, was not necessary for IFN production but instead contributed to host defense. In vitro, phagocytosis of Y. pestis by macrophages and neutrophils was more effective in the presence of IRF-3 and was not affected by IFN-β signaling. This activity correlated with limited bacterial growth in vivo in the presence of IRF-3. Together the data demonstrate that IRF-3 is able to activate pathways of innate immunity against bacterial infection that extend beyond regulation of IFN-β production.
Journal Article
Chikungunya virus virus-like particle vaccine safety and immunogenicity in adolescents and adults in the USA: a phase 3, randomised, double-blind, placebo-controlled trial
2025
Chikungunya disease is a growing global public health concern. Vimkunya (previously chikungunya virus virus-like particle vaccine, previously PXVX0317) is a single-dose, pre-filled syringe for intramuscular injection. Here, we report safety, tolerability, and immunogenicity data for Vimkunya versus placebo in healthy adolescents and adults aged 12–64 years, and evaluate lot-to-lot consistency.
This pivotal phase 3, randomised, double-blind, placebo-controlled, parallel-group trial was done at 47 clinical trial sites in the USA. Eligible participants were healthy adolescents and adults aged 12–64 years. Participants were divided into three age strata (12–17 years, 18–45 years, and 46–64 years) within each site and randomly assigned (2:2:2:1) to receive one of three consecutively manufactured lots of Vimkunya or placebo (same excipient composition without chikungunya virus virus-like particle or aluminium hydroxide components) on study day 1. Neither participants, nor clinical site personnel, nor the funder knew participants' individual treatment assignments until all participants completed their involvement in the trial and the database was cleaned and locked. Participants attended a screening visit, followed by a day 1 visit that included random assignment, blood sample collection, and administration of a single dose of Vimkunya or placebo by intramuscular injection in the deltoid muscle. The coprimary endpoints were: the difference in chikungunya virus serum neutralising antibody seroreponse rate (vaccine minus placebo) at day 22; chikungunya virus serum neutralising antibody geometric mean titre (GMT) at day 22 for vaccine and placebo; and chikungunya virus serum neutralising GMT ratio at day 22 between all three pairs of vaccine lots (A:B, B:C, and A:C) in adults aged 18–45 years. The trial is registered with ClinicalTrials.gov, NCT05072080 and EudraCT, 2023-001124-42.
Between Sept 29, 2021, and Sept 23, 2022, 4215 participants were screened, of whom 3258 were eligible and enrolled (1667 [51·2%] female and 1591 [48·8%] male), and 3254 (99·9%) received either Vimkunya (n=2790) or placebo (n=464). The immunogenicity evaluable population included 2983 participants, of whom 2559 received Vimkunya and 424 received placebo. At day 22, 2503 (97·8%) of 2559 participants in the Vimkunya group had a seroresponse, compared with five (1·2%) of 424 participants in the placebo group for the immunogenicity evaluable population. The seroreponse rate difference was 96·6% (95% CI 95·0–97·5; p<0·0001). In the immunogenicity evaluable population, chikungunya virus serum neutralising antibody GMT at day 22 for the vaccine group was 1618 and for the placebo group was 7·9 (p<0·0001). At day 22, the serum neutralising GMT ratios for the pairs of lots (A:B, B:C, and A:C) were 0·98 (95% CI 0·85–1·14), 0·97 (0·84–1·12), and 0·95 (0·82–1·10), respectively. Vimkunya had a favourable safety profile; most adverse events were self-limiting and grade 1 or 2 in severity. The most common adverse events were injection site pain (656 [23·7%] of 2764 participants in the vaccine group), fatigue (551 [19·9%] of 2764), headache (498 [18·0%] of 2765), and myalgia (486 [17·6%] of 2764).
Vimkunya induces a rapid and robust immune response. These findings support the potential for this vaccine to protect individuals aged 12–64 years from disease caused by chikungunya virus.
Emergent BioSolutions and Bavarian Nordic.
Journal Article