Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
154
result(s) for
"Andersson, Anders F."
Sort by:
Binning metagenomic contigs by coverage and composition
2014
The CONCOCT software performs unsupervised binning of metagenomic contigs across multiple samples to allow better genome reconstruction from microbial communities.
Shotgun sequencing enables the reconstruction of genomes from complex microbial communities, but because assembly does not reconstruct entire genomes, it is necessary to bin genome fragments. Here we present CONCOCT, a new algorithm that combines sequence composition and coverage across multiple samples, to automatically cluster contigs into genomes. We demonstrate high recall and precision on artificial as well as real human gut metagenome data sets.
Journal Article
Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and Gut Microbiome
by
Jakobsson, Hedvig E.
,
Jernberg, Cecilia
,
Sjölund-Karlsson, Maria
in
16S/genetics
,
Analysis
,
Anti-Bacterial Agents - therapeutic use
2010
Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four-year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance.
Journal Article
Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing
2008
Humans host complex microbial communities believed to contribute to health maintenance and, when in imbalance, to the development of diseases. Determining the microbial composition in patients and healthy controls may thus provide novel therapeutic targets. For this purpose, high-throughput, cost-effective methods for microbiota characterization are needed. We have employed 454-pyrosequencing of a hyper-variable region of the 16S rRNA gene in combination with sample-specific barcode sequences which enables parallel in-depth analysis of hundreds of samples with limited sample processing. In silico modeling demonstrated that the method correctly describes microbial communities down to phylotypes below the genus level. Here we applied the technique to analyze microbial communities in throat, stomach and fecal samples. Our results demonstrate the applicability of barcoded pyrosequencing as a high-throughput method for comparative microbial ecology.
Journal Article
Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial Communities
2008
Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.
Journal Article
Evaluating metagenomic assembly approaches for biome-specific gene catalogues
2022
Background
For many environments, biome-specific microbial gene catalogues are being recovered using shotgun metagenomics followed by assembly and gene calling on the assembled contigs. The assembly is typically conducted either by individually assembling each sample or by co-assembling reads from all the samples. The co-assembly approach can potentially recover genes that display too low abundance to be assembled from individual samples. On the other hand, combining samples increases the risk of mixing data from closely related strains, which can hamper the assembly process. In this respect, assembly on individual samples followed by clustering of (near) identical genes is preferable. Thus, both approaches have potential pros and cons, but it remains to be evaluated which assembly strategy is most effective. Here, we have evaluated three assembly strategies for generating gene catalogues from metagenomes using a dataset of 124 samples from the Baltic Sea: (1) assembly on individual samples followed by clustering of the resulting genes, (2) co-assembly on all samples, and (3) mix assembly, combining individual and co-assembly.
Results
The mix-assembly approach resulted in a more extensive nonredundant gene set than the other approaches and with more genes predicted to be complete and that could be functionally annotated. The mix assembly consists of 67 million genes (Baltic Sea gene set, BAGS) that have been functionally and taxonomically annotated. The majority of the BAGS genes are dissimilar (< 95% amino acid identity) to the Tara Oceans gene dataset, and hence, BAGS represents a valuable resource for brackish water research.
Conclusion
The mix-assembly approach represents a feasible approach to increase the information obtained from metagenomic samples.
2ejQBUeEnuGxo9-fpjRp29
Video abstract
Journal Article
Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea
by
Jürgens, Klaus
,
Waniek, Joanna J
,
Bertilsson, Stefan
in
454 pyrosequencing
,
631/158/2446/2447
,
631/158/670
2011
Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater–freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of world's largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche.
Journal Article
Towards high-throughput parallel imaging and single-cell transcriptomics of microbial eukaryotic plankton
2024
Single-cell transcriptomics has the potential to provide novel insights into poorly studied microbial eukaryotes. Although several such technologies are available and benchmarked on mammalian cells, few have been tested on protists. Here, we applied a microarray single-cell sequencing (MASC-seq) technology, that generates microscope images of cells in parallel with capturing their transcriptomes, on three species representing important plankton groups with different cell structures; the ciliate
Tetrahymena thermophila
, the diatom
Phaeodactylum tricornutum
, and the dinoflagellate
Heterocapsa
sp. Both the cell fixation and permeabilization steps were adjusted. For the ciliate and dinoflagellate, the number of transcripts of microarray spots with single cells were significantly higher than for background spots, and the overall expression patterns were correlated with that of bulk RNA, while for the much smaller diatom cells, it was not possible to separate single-cell transcripts from background. The MASC-seq method holds promise for investigating \"microbial dark matter”, although further optimizations are necessary to increase the signal-to-noise ratio.
Journal Article
Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential
2018
The rate of caesarean section delivery (CSD) is increasing worldwide. It remains unclear whether disruption of mother-to-neonate transmission of microbiota through CSD occurs and whether it affects human physiology. Here we perform metagenomic analysis of earliest gut microbial community structures and functions. We identify differences in encoded functions between microbiomes of vaginally delivered (VD) and CSD neonates. Several functional pathways are over-represented in VD neonates, including lipopolysaccharide (LPS) biosynthesis. We link these enriched functions to individual-specific strains, which are transmitted from mothers to neonates in case of VD. The stimulation of primary human immune cells with LPS isolated from early stool samples of VD neonates results in higher levels of tumour necrosis factor (TNF-α) and interleukin 18 (IL-18). Accordingly, the observed levels of TNF-α and IL-18 in neonatal blood plasma are higher after VD. Taken together, our results support that CSD disrupts mother-to-neonate transmission of specific microbial strains, linked functional repertoires and immune-stimulatory potential during a critical window for neonatal immune system priming.
The effects of caesarean section delivery on mother-to-neonate transmission of microbiota are unclear. Here the authors show that caesarean section delivery can affect the transmission of specific microbial strains and the immunomodulatory potential of the microbiota.
Journal Article
Active sulfur cycling in the terrestrial deep subsurface
2020
The deep terrestrial subsurface remains an environment where there is limited understanding of the extant microbial metabolisms. At Olkiluoto, Finland, a deep geological repository is under construction for the final storage of spent nuclear fuel. It is therefore critical to evaluate the potential impact microbial metabolism, including sulfide generation, could have upon the safety of the repository. We investigated a deep groundwater where sulfate is present, but groundwater geochemistry suggests limited microbial sulfate-reducing activity. Examination of the microbial community at the genome-level revealed microorganisms with the metabolic capacity for both oxidative and reductive sulfur transformations.
Deltaproteobacteria
are shown to have the genetic capacity for sulfate reduction and possibly sulfur disproportionation, while
Rhizobiaceae
,
Rhodocyclaceae
,
Sideroxydans
, and
Sulfurimonas
oxidize reduced sulfur compounds. Further examination of the proteome confirmed an active sulfur cycle, serving for microbial energy generation and growth. Our results reveal that this sulfide-poor groundwater harbors an active microbial community of sulfate-reducing and sulfide-oxidizing bacteria, together mediating a sulfur cycle that remained undetected by geochemical monitoring alone. The ability of sulfide-oxidizing bacteria to limit the accumulation of sulfide was further demonstrated in groundwater incubations and highlights a potential sink for sulfide that could be beneficial for geological repository safety.
Journal Article
Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities
by
Andersson, Anders F
,
Bertilsson, Stefan
,
Riemann, Lasse
in
16S rRNA
,
16S/genetics
,
454 pyrosequencing
2010
Variation in traits causes bacterial populations to respond in contrasting ways to environmental drivers. Learning about this will help us understand the ecology of individual populations in complex ecosystems. We used 454 pyrosequencing of the hypervariable region V6 of the 16S rRNA gene to study seasonal dynamics in Baltic Sea bacterioplankton communities, and link community and population changes to biological and chemical factors. Surface samples were collected from May to October 2003 and in May 2004 at the Landsort Deep in the central Baltic Sea Proper. The analysis rendered, on average, 20 200 sequence reads for each of the eight samples analyzed, providing the first detailed description of Baltic Sea bacterial communities. Community composition varied dramatically over time, supporting the idea of strong temporal shifts in bacterioplankton assemblages, and clustered according to season (including two May samples from consecutive years), suggesting repeatable seasonal succession. Overall, community change was most highly correlated with change in phosphorus concentration and temperature. Individual bacterial populations were also identified that tightly co-varied with different
Cyanobacteria
populations. Comparing the abundance profiles of operational taxonomic units at different phylogenetic distances revealed a weak but significant negative correlation between abundance profile similarity and genetic distance, potentially reflecting habitat filtering of evolutionarily conserved functional traits in the studied bacterioplankton.
Journal Article