Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Andrea Seigel"
Sort by:
Screening of orange peel waste on valuable compounds by gradient multiple development diode-array high-performance thin-layer chromatography
High-performance thin-layer chromatography (HPTLC), as the modern form of TLC (thin-layer chromatography), is suitable for detecting pharmaceutically active compounds over a wide polarity range using the gradient multiple development (GMD) technique. Diode-array detection (DAD) in conjunction with HPTLC can simultaneously acquire ultraviolet‒visible (UV‒VIS) and fluorescence spectra directly from the plate. Visualization as a contour plot helps to identify separated zones. An orange peel extract is used as an example to show how GMD‒DAD‒HPTLC in seven different developments with seven different solvents can provide an overview of the entire sample. More than 50 compounds in the extract can be separated on a 6-cm HPTLC plate. Such separations take place in the biologically inert stationary phase of HPTLC, making it a suitable method for effect-directed analysis (EDA). HPTLC‒EDA can even be performed with living organism, as confirmed by the use of Aliivibrio fischeri bacteria to detect bioluminescence as a measure of toxicity. The combining of gradient multiple development planar chromatography with diode-array detection and effect-directed analysis (GMD‒DAD‒HPTLC‒EDA) in conjunction with specific staining methods and time-of-flight mass spectrometry (TOF‒MS) will be the method of choice to find new chemical structures from plant extracts that can serve as the basic structure for new pharmaceutically active compounds.
Quantification of Parabens by Diode-Array Thin-Layer Chromatography Coupled with a Vibrio Fischeri Bioluminescence Assay
Summary We present a video-densitometric quantification method in combination with diode-array quantification for the methyl-, ethyl-, propyl-, and butylparaben in cosmetics. These parabens were separated on cyanopropyl bonded plates using water-acetonitrile-dioxane-ethanol-NH 3 (25%) (8:2:1:1:0.05, v/v ) as mobile phase. The quantification is based on UV-measurements at 255 nm and a bioeffectively-linked analysis using Vibrio fischeri bacteria. Within 5 min, a Tidas S 700 diode-array scanner (J&M, Aalen, Germany) scans 8 tracks and thus measures in total 5600 spectra in the wavelengths range from 190 to 1000 nm. The quantification range for all these parabens is from 20 to 400 ng per band, measured at 255 nm. In the V. fischeri assay a CCD-camera registers the white light of the light-emitting bacteria within 10 min. All parabens effectively suppress the bacterial light emission which can be used for quantifying within a linear range from 100 to 400 ng. Measurements were carried out using a 16-bit MicroChemi chemiluminescence system (biostep GmbH, Jahnsdorf, Germany), using a CCD camera with 4.19 megapixels. The range of linearity is achieved because the extended Kubelka-Munk expression was used for data transformation. The separation method is inexpensive, fast, and reliable.