Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Andresen, Jeff"
Sort by:
Vitis vinifera Production in Michigan: Factors and Trends Driving Cultivation Patterns
Vinifera cultivation is a thriving and growing industry across the state of Michigan (MI), United States. Extensive time, funds, and effort have been applied by the industry to promote growth and the onset of new producers. Specifically, Vitis vinifera wine grapes, which have been cultivated in MI since the 1970s, have seen a rapid expansion and investment from both first-time and legacy growers. However, historically, the climate of MI presented a challenge for cultivation because of low growing season temperatures (GSTs), short growing seasons, and excessive precipitation at the time of harvest. Over time, two key factors have led the MI wine industry to overcome the challenging climate. First, as seen in the literature, there are noted changes in climate, especially since the late 1980s, leading to more favorable conditions for cultivation. Second, MI growers traditionally focused on V. vinifera cultivation, which is susceptible to low winter temperatures, selected less vulnerable regions within the state while also focusing on vine protection techniques. Given the rapid growth of the wine industry across MI, there is a need to understand suitability and its drivers to help all growers make economically impactful decisions on production and expansion of wine grapes. This article looked to study the suitability of MI vinifera across the state in two ways. Initially, through an extensive literature review, the key drivers and commonly noted trends guiding vinifera production were chronicled. Second, through a trend analysis of the key drivers of suitability, the study investigated how such variables are changing significantly over space and time. The results of this study expand the knowledge of cool climate agriculture production and suitability for cultivation and highlight the complexity of relating suitability drivers for non-cool climate to cool climate vinifera cultivation.
Extension′s role in disseminating information about climate change to agricultural stakeholders in the United States
The U.S. Cooperative Extension Service was created 100 years ago to serve as a boundary or interface organization between science generated at the nation′s land grant universities and rural communities. Production agriculture in the US is becoming increasingly complex and challenging in the face of a rapidly changing climate and the need to balance growing crop productivity with environmental protection. Simultaneously, extension budgets are diminishing and extension personnel are stretched thin with numerous, diverse stakeholders and decreasing budgets. Evidence from surveys of farmers suggests that they are more likely to go to private retailers and consultants for information than extension. This paper explores the role that extension can play in facilitating climate change adaptation in agriculture using data from a survey of agricultural advisors in Indiana, Iowa, Michigan and Nebraska and a survey of extension educators in the 12 state North Central Region. Evidence from these surveys shows that a majority of extension educators believe that climate change is happening and that they should help farmers prepare. It also shows that private agricultural advisors trust extension as a source of information about climate change. This suggests that extension needs to continue to foster its relationship with private information providers because working through them will be the best way to ultimately reach farmers with climate change information. However extension educators must be better informed and trained about climate change; university specialists and researchers can play a critical role in this training process.
Extension's role in disseminating information about climate change to agricultural stakeholders in the United States
The U.S. Cooperative Extension Service was created 100 years ago to serve as a boundary or interface organization between science generated at the nation's land grant universities and rural communities. Production agriculture in the US is becoming increasingly complex and challenging in the face of a rapidly changing climate and the need to balance growing crop productivity with environmental protection. Simultaneously, extension budgets are diminishing and extension personnel are stretched thin with numerous, diverse stakeholders and decreasing budgets. Evidence from surveys of farmers suggests that they are more likely to go to private retailers and consultants for information than extension. This paper explores the role that extension can play in facilitating climate change adaptation in agriculture using data from a survey of agricultural advisors in Indiana, Iowa, Michigan and Nebraska and a survey of extension educators in the 12 state North Central Region. Evidence from these surveys shows that a majority of extension educators believe that climate change is happening and that they should help farmers prepare. It also shows that private agricultural advisors trust extension as a source of information about climate change. This suggests that extension needs to continue to foster its relationship with private information providers because working through them will be the best way to ultimately reach farmers with climate change information. However extension educators must be better informed and trained about climate change; university specialists and researchers can play a critical role in this training process.
MESONETS
Mesoscale in situ meteorological observations are essential for better understanding and forecasting the weather and climate and to aid in decision-making by a myriad of stakeholder communities. They include, for example, state environmental and emergency management agencies, the commercial sector, media, agriculture, and the general public. Over the last three decades, a number of mesoscale weather and climate observation networks have become operational. These networks are known as mesonets. Most are operated by universities and receive different levels of funding. It is important to communicate the current status and critical roles the mesonets play. Most mesonets collect standard meteorological data and in many cases ancillary near-surface data within both soil and water bodies. Observations are made by a relatively spatially dense array of stations, mostly at subhourly time scales. Data are relayed via various means of communication to mesonet offices, with derived products typically distributed in tabular, graph, and map formats in near–real time via the World Wide Web. Observed data and detailed metadata are also carefully archived. To ensure the highest-quality data, mesonets conduct regular testing and calibration of instruments and field technicians make site visits based on “maintenance tickets” and prescheduled frequencies. Most mesonets have developed close partnerships with a variety of local, state, and federal-level entities. The overall goal is to continue to maintain these networks for high-quality meteorological and climatological data collection, distribution, and decision-support tool development for the public good, education, and research.
Calibration and Validation of the Hybrid-Maize Crop Model for Regional Analysis and Application over the U.S. Corn Belt
Detailed parameter sensitivity, model validation, and regional calibration of the Hybrid-Maize crop model were undertaken for the purpose of regional agroclimatic assessments. The model was run at both field scale and county scale. The county-scale study was based on 30-yr daily weather data and corn yield data from the National Agricultural Statistics Service survey for 24 locations across the Corn Belt of the United States. The field-scale study was based on AmeriFlux sites at Bondville, Illinois, and Mead, Nebraska. By using the one-at-a-time and interaction-explicit factorial design approaches for sensitivity analysis, the study found that the five most sensitive parameters of the model were potential number of kernels per ear, potential kernel filling rate, initial light use efficiency, upper temperature cutoff for growing degree-days’ accumulation, and the grain growth respiration coefficient. Model validation results show that the Hybrid-Maize model performed satisfactorily for field-scale simulations with a mean absolute error (MAE) of 10 bu acre−1 despite the difficulties of obtaining hybrid-specific information. At the county scale, the simulated results, assuming optimal crop management, overpredicted the yields but captured the variability well. A simple regional adjustment factor of 0.6 rescaled the potential yield to actual yield well. These results highlight the uncertainties that exist in applying crop models at regional scales because of the limitations in accessing crop-specific information. This study also provides confidence that uncertainties can potentially be eliminated via simple adjustment factor and that a simple crop model can be adequately useful for regional-scale agroclimatic studies.
Mesonets: Mesoscale Weather and Climate Observations for the United States
Mesoscale in situ meteorological observations are essential for better understanding and forecasting the weather and climate and to aid in decision-making by a myriad of stakeholder communities. They include, for example, state environmental and emergency management agencies, the commercial sector, media, agriculture, and the general public. Over the last three decades, a number of mesoscale weather and climate observation networks have become operational. These networks are known as mesonets. Most are operated by universities and receive different levels of funding. It is important to communicate the current status and critical roles the mesonets play. Most mesonets collect standard meteorological data and in many cases ancillary near-surface data within both soil and water bodies. Observations are made by a relatively spatially dense array of stations, mostly at subhourly time scales. Data are relayed via various means of communication to mesonet offices, with derived products typically distributed in tabular, graph, and map formats in near-real time via the World Wide Web. Observed data and detailed metadata are also carefully archived. To ensure the highest-quality data, mesonets conduct regular testing and calibration of instruments and field technicians make site visits based on “maintenance tickets” and prescheduled frequencies. Most mesonets have developed close partnerships with a variety of local, state, and federal-level entities. The overall goal is to continue to maintain these networks for high-quality meteorological and climatological data collection, distribution, and decision-support tool development for the public good, education, and research.
Granulocyte Colony-Stimulating Factor Enhances Pulmonary Host Defenses in Normal and Ethanol-Treated Rats
Ethanol suppresses functions of the polymorphonuclear leukocyte (PMNL), seriously compromising normal host defenses against pneumonia. Because granulocyte colony-stimulating factor (G-CSF) augments the number and function ofPMNL, the effect ofG-CSF on the antibacterial defenses of the lung in normal and acutely intoxicated rats was studied. Animals received G-CSF or vehicle twice a day for 2 days, then ethanol or saline, followed by challenge with Klebsiella pneumoniae. K. pneumoniae elicited an intrapulmonary influx of PMNL in control rats that was markedly suppressed by prior ethanol administration. G-CSF augmented the recruitment of PMNL into the lungs of control rats and significantly attenuated the adverse effects of ethanol on PMNL entry into the lung. G-CSF enhanced intrapulmonary bactericidal activity against this pathogen in normal and ethanol-treated rats. All intoxicated rats pretreated with the vehicle died, while >90% of rats pretreated with G-CSF survived. These findings suggest a potential role for G-CSF in mitigating the adverse effects of ethanol on PMNL delivery and pulmonary host defenses.
Guanylate Cyclase and the Adrenal Natriuretic Factor Receptor
A comment on an article on guanylate cyclase and ANF receptor discusses the data and conclusions. A response provides more details and data. References.