Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Angela Sihotang, Erna Fransisca"
Sort by:
Pneumonia detection on x-ray image using improved depthwise separable convolutional neural networks
A single neural network model cannot capture intricate and diverse features due to its ability to learn only a finite set of patterns from the data. Additionally, training and utilising a single model can be computationally demanding. Experts propose incorporating multiple neural network models to address these constraints to extract complementary attributes. Previous research has highlighted challenges network models face, including difficulties in effectively capturing highly detailed spatial features, redundancy in network structure parameters, and restricted generalisation capabilities. This study introduces an innovative neural network architecture that combines the Xception module with the inverse residue structure to tackle these issues. Considering this, the paper presents a model for detecting pneumonia in X-ray images employing an improved depthwise separable convolutional network. This network architecture integrates the inverse residual structure from the MobileNetV2 model, using the rectified linear unit (ReLU) non-linear activation function throughout the entire network. The experimental results show an impressive recognition rate with a test accuracy of 97.24% on the chest x-ray dataset. This method can extract more profound and abstract image features while mitigating overfitting issues and enhancing the network's generalisation capacity.