Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
67 result(s) for "Angelakis, Andreas N."
Sort by:
Water Supply and Water Scarcity
This paper provides an overview of the Special Issue on water supply and water scarcity. The papers selected for publication include review papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue underscores the need for a revised water management, especially in areas with demographic change and climate vulnerability towards sustainable and secure water supply. Moreover, general guidelines and possible solutions, such as the adoption of advanced technological solutions and practices that improve water use efficiency and the use of alternative (non-conventional) water resources are highlighted and discussed to address growing environmental and health issues and to reduce the emerging conflicts among water users.
Wastewater Treatment and Reuse: Past, Present, and Future
This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.
Water Reuse: From Ancient to Modern Times and the Future
Domestic wastewater (sewage) has been used for irrigation and aquaculture since the Bronze Age (ca. 3,200-1,100 BC) by prehistoric civilizations (e.g. Chinese, Egyptian, Indus Valley, Mesopotamian, and Minoan). In historic times (ca. 1,000 BC-330 AD), wastewater was disposed of or used for irrigation and fertilization purposes by the Greek civilization and later by the Romans in areas surrounding cities (e.g. Athens and Rome). In more recent history, the practice of land application of wastewater for disposal and agricultural use was utilized first in European cities and later in USA. Today, the planning and implementation of water reclamation and reuse projects is occurring throughout the world. Recycled water is now used for almost any purpose including potable use. This paper provides a brief overview of the evolution of water reuse over the last ca. 5,000 years. Understanding the practices and solutions of the past, provides a lens with which to view present and future challenges in a highly-urbanized world.
Wastewater Management: From Ancient Greece to Modern Times and Future
Current wastewater management paradigms favor centralized solutions, as taught in traditional engineering schools, which imply high capital costs, long-range water transfer, long and disruptive construction and highly trained operators. On the other hand, small decentralized systems are seldom considered even though they require lower capital costs, less disruptive infrastructure construction and allow for the maintenance of a closer, more sustainable water cycle. This manuscript starts with an extensive review of the long history of wastewater systems, from the Greek antiquity to the modern era. The use of natural and physical systems in history and their evolution into modern technology is also analyzed. Finally, future trends are considered with emphasis on technological adaptation and sustainability of decentralized systems, with a view that lessons that can be learned from history and past practices. The manuscript aims to provide a critical overview of water and wastewater management in view of the oncoming challenges of this sector.
The Importance of Nonconventional Water Resources under Water Scarcity
According to FAO, water scarcity is now affecting all five continents and is expected to intensify in the coming years as the water demands of the growing population increase and the impacts of climate variability become more pronounced. The existing unevenness of water resource availability and insufficient investment in relevant infrastructure have forced the water sector to recognize the importance of nonconventional water resources (NWR) in planning for a sustainable water future. The purpose of this review is to highlight the available and potentially available NWR and to discuss the future application of these water sources.
Desalination: From Ancient to Present and Future
Water is life, and without water, there would be no civilizations and a vacant Earth. Water is considered an abundant natural resource on the earth. Water covers 3/4 of the surface. However, 97% of the available water on the earth is salty oceanic water, and only a tiny fraction (3%) is freshwater. This small portion of the available water supplies the needs of humans and animals. However, freshwater exists in underground, rivers, and lakes and is insufficient to cover all the world’s water demands. Thus, water saving, water reuse, rainwater harvesting, stormwater utilization, and desalination are critical for maintaining water supplies for the future of humanity. Desalination has a long history spanning centuries from ancient times to the present. In the last two decades, desalination has been rapidly expanding to meet water needs in stressed water regions of the world. Yet, there are still some problems with its implementation in several areas of the world. This review provides a comprehensive assessment of the history of desalination for wiser and smarter water extraction and uses to sustain and support the water needs of the earth’s inhabitants.
A Critical Review of Water Reuse: Lessons from Prehistoric Greece for Present and Future Challenges
Wastewater treatment and reuse has passed through different development stages with time. This study reviews the most essential changes in water reclamation and reuses over millennia, focusing on initial approaches in the Hellenic world and discussing the current situation. Based on archeological evidence and time records, the awareness of the Greeks regarding land disposal, irrigation, and water reuse is highlighted. The latter has evolved into a plethora of applications, with Direct Potable Reuse (DPR) representing one of the last modern frontiers. Currently, advances in wastewater treatment and the spreading of wastewater treatment plants producing large amounts of treated effluents increase the potential for water reuse. This is regarded as a critical option for the continuing protection of water resources and human health, while concurrently satisfying water demand, particularly in areas subject to increased water scarcity. The main constraints in the expansion of water reuse practices are discussed, focusing on wastewater treatment efficiency and quality effluent standards issues, as well as on the lack of motivations related to the acceptability of this practice by final users. Against these challenges, the need for a transition from an “issue-by-issue” approach to a broader integrated water management framework is highlighted.
Water Dams: From Ancient to Present Times and into the Future
Since ancient times, dams have been built to store water, control rivers, and irrigate agricultural land to meet human needs. By the end of the 19th century, hydroelectric power stations arose and extended the purposes of dams. Today, dams can be seen as part of the renewable energy supply infrastructure. The word dam comes from French and is defined in dictionaries using words like strange, dike, and obstacle. In other words, a dam is a structure that stores water and directs it to the desired location, with a dam being built in front of river valleys. Dams built on rivers serve various purposes such as the supply of drinking water, agricultural irrigation, flood control, the supply of industrial water, power generation, recreation, the movement control of solids, and fisheries. Dams can also be built in a catchment area to capture and store the rainwater in arid and semi-arid areas. Dams can be built from concrete or natural materials such as earth and rock. There are various types of dams: embankment dams (earth-fill dams, rock-fill dams, and rock-fill dams with concrete faces) and rigid dams (gravity dams, rolled compacted concrete dams, arch dams, and buttress dams). A gravity dam is a straight wall of stone masonry or earthen material that can withstand the full force of the water pressure. In other words, the pressure of the water transfers the vertical compressive forces and horizontal shear forces to the foundations beneath the dam. The strength of a gravity dam ultimately depends on its weight and the strength of its foundations. Most dams built in ancient times were constructed as gravity dams. An arch dam, on the other hand, has a convex curved surface that faces the water. The forces generated by the water pressure are transferred to the sides of the structure by horizontal lines. The horizontal, normal, and shear forces resist the weight at the edges. When viewed in a horizontal section, an arch dam has a curved shape. This type of dam can also resist water pressure due to its particular shape that allows the transfer of the forces generated by the stored water to the rock foundations. This article takes a detailed look at hydraulic engineering in dams over the millennia. Lessons should be learned from the successful and unsuccessful applications and operations of dams. Water resource managers, policymakers, and stakeholders can use these lessons to achieve sustainable development goals in times of climate change and water crisis.
Sustainability of Water, Sanitation, and Hygiene: From Prehistoric Times to the Present Times and the Future
Contaminated water and poor sanitation are associated with disease transmission. Absent, inadequate, or improperly managed water resources and sanitation systems expose individuals to preventable health risks. Billions of people lack access to these basic services today and will remain in this condition for decades to come. As we are usually thinking and talking about water, sanitation and hygiene services have changed. Looking back at the history of water, sanitation, and hygiene can help us understand the challenges and opportunities of these issues and draw lessons to achieve sustainable development in the future. Throughout history, civilizations have successfully experimented with treating water and using it for drinking, sanitation, and agriculture. For example, the Minoan civilizations originally focused on water treatment and cleaning to improve the aesthetic properties of drinking water. During prehistoric times, Minoan and Indus Valley civilizations, dating back to about 2000 BC, were the first to focus on the treatment of water supplies. From the early Minoan period, they relied on rainwater collection. During historic times, Hippocrates was the first to invent and used a water filter in the form of a cloth bag, at about 400 BC, known today as the Hippocrates Sleeve. The Romans perfected existing water technologies on a larger scale and initiated their spread throughout the Empire. Hygiene in ancient Rome was promoted by the famous public baths and toilets, which were supplied with water through widely branched aqueducts that had a high standard of cleanliness for the time and were regularly maintained.