Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Aniskin, V.M."
Sort by:
Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae
Previous morphological and molecular analyses failed to resolve the phylogenetic position of the critically endangered saola (Pseudoryx nghetinhensis) with respect to its placement in Bovina (cattle, bison, and yak) or Bubalina (Asian and African buffaloes). In the present study, G- and C-banding, Ag-staining and FISH with 28S and telomeric probes was undertaken for 17 bovid species. An analysis of these data allowed us to identify 49 structural rearrangements that included autosomes, gonosomes and 17 different NOR sites. The combined data set was subjected to a cladistic analysis aimed at: (i) providing new insights on phylogenetic relationships of the saola and other species within the subfamily Bovinae, and (ii) testing the suitability of different classes of chromosomal characters for phylogenetic reconstruction of the family Bovidae. The study revealed that nucleolar organizing regions (NORs) are phylogenetically informative. It was shown that at least one, or sometimes two of these characters punctuate divergences that include nodes that are the most basal in the tree, to those that are the most recent. In this context, the shared presence of three NORs in saola and species of Syncerus and Bubalus strongly suggests the saola’s placement within the subtribe Bubalina. This contrasts with Robertsonian rearrangements which are informative only at the generic level. These findings suggest that NORs are an important and frequently overlooked source of additional phylogenetic information within the Bovidae that may also have applicability at higher taxonomic levels, possibly even for Pecora.
Unusually extensive karyotype reorganization in four congeneric Gerbillus species (Muridae: Gerbillinae)
Comparative analysis of the G- and C-banding patterns in four morphologically poorly differentiated Gerbillus species (G. pyramidum, G. perpallidus, G. tarabuli and G. occiduus) was carried out. These gerbils have similar karyotype morphology with 2n and NF equal to 38/76, 40/76, 40/78 and 40/80, respectively. Our study revealed that possibly 70 Robertsonian (Rb) fusions, two pericentric inversions, one tandem translocation and at least 13 non-identified rearrangements have occurred during the karyotypic evolution of these species. The number of chromosomal changes by which any of these species differ from each other ranges from 33 to 49. One Rb fusion was common to two of the species, with only a single autosome-gonosome translocation shared by all four, suggesting a monophyletic origin of these karyotypically highly divergent species. Based on the chromosomal data obtained here, the systematic and geographic implications for these North African species are also discussed.   
Karyotype Reorganisation in the subtilis Group of Birch Mice (Rodentia, Dipodidae, Sicista): Unexpected Taxonomic Diversity within a Limited Distribution
Conventional cytogenetic studies of Sicista subtilis and S. severtzovi (Dipodidae, Sicistinae), both attributable to the subtilis group of birch mice, revealed extensive karyotype diversity with 2n = 16–26 and NFa values of 26–46 indicating the overwhelming non-Robertsonian nature of chromosomal reorganization in these species. The numerical and structural chromosome variability was principally found in specimens located within a confined region of the East European (Russian) Plain. The approximately 135,000-km 2 area occurs in the vicinity of the Don River bend between 49°13’N/43°46’E and 51°32’N/36°16’E. The detection of cytotypes sharing similar 2n and NF values, but having morphologically distinct chromosomes, suggests that these may result from polymorphisms present both within recognized species and in cryptic taxa not hitherto described. We conducted a comprehensive, comparative chromosome banding analysis of 52 birch mice (21 localities) referable to the subtilis group and report the presence of 5 distinct karyotypes, each characterized by a combination of stable, variable, and partly overlapping 2n/NFa values. These karyotypes differed from each other by 10–29 structural chromosomal rearrangements (18.1 ± 6.3) that comprised Rb fusions/fissions (42.2%), pericentric inversions (31.1%), and tandem translocations (22.2%). The composition, and the high numbers of these chromosomal changes, is likely to provide an effective means of post-mating isolation, suggesting that taxonomic diversity within the subtilis group is larger than currently accepted. Additionally, we report the frequent fixation of tandem translocations in sample populations, one of which was found in a polymorphic state representing, as far as we are aware, the first case of an in statu nascendi tandem fusion in wild populations. Moreover, our data revealed that bi-armed chromosomes were involved in fusions detected in some of the subtilis taxa. In each instance, however, fusions were preceded by pericentric inversions that transform one or both bi-armed chromosomes into acrocentrics resulting in either centromere-telomere or Robertsonian translocations. Finally, a phylogenetic scenario inferred from a cladistic analysis of the chromosomal data suggests that the extensive karyotypic diversification within the subtilis group in the south-east region of the Russian Plain most likely results from fragmentation of a continuously distributed, ancestral population. It is thought that this occurred at the last glacial maximum (18,000–14,000 years B.P.), and that the process of isolation has been exacerbated by increasing human activity in the region in modern times.
Systematics and phylogeny of West African gerbils of the genus Gerbilliscus (Muridae: Gerbillinae) inferred from comparative G- and C-banding chromosomal analyses
Comparative analysis of the G- and C-banding patterns in six morphologically similar species of the genus Gerbilliscus(G. gambianus, G. guineae, G. kempi, Gerbilliscus sp., G. robustus and G. leucogaster) and one belonging to the genus Gerbillurus (G. tytonis) from 27 West, East and South African localities was carried out. Our study revealed that 17 rearrangements comprising seven fissions, five translocations and five inversions occurred in the evolution of this group, with 1–13 rearrangements differentiating the various species. In addition the unusually large sex chromosomes appear to be species-specific as judged by size and morphology reflecting structural rearrangements as well as the variable presence of a large amount of C-heterochromatin found in each species at a particular chromosomal location. These karyotypic features allow us to recognize five distinct species in West Africa (compared to the two recognized in recent taxonomic lists) and to roughly delimit their geographical distributions. The pattern of phylogenetic relationships inferred from a cladistic analysis of the chromosomal data is in good agreement with recent molecular phylogenetic studies that recognize a West African species group within the genus Gerbilliscus, and the monophyly of both Gerbilliscus and Gerbillurus.
Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data
Here we report on the analysis of three rodent sibling species complexes belonging to the African genera Arvicanthis, Acomys and Mastomys. Using cytogenetic and molecular approaches we set out to investigate how karyotype and molecular evolution are linked in these muroid sibling species and, in particular, to what extent chromosomal changes are relevant to cladogenic events inferred from molecular data. The study revealed that each complex is characterized by a distinct pattern of karyotype evolution (karyotypic orthoselection), and a specific mutation rate. However we found that the general pattern may be considerably modified in the course of evolution within the same species complex (Arvicanthis, Acomys). This observation suggests that karyotypic orthoselection documented in numerous groups is not so much a reflection of selection of a definite type of chromosomal mutation, as suggested by the classical concept, but is due to genome structure of a given species. In particular, karyotypic change appears related to the quantity and chromosomal location of repeated sequences. The congruence between the chromosomal and molecular data shows that chromosomal changes are often valuable phylogenetic characters (Arvicanthis and Mastomys, but not Acomys). However, most importantly the approach underscores the value of incorporating both in order to gain a better understanding of complex patterns of evolution. Moreover, the fact that every cladogenetic event in Mastomys is supported by two pericentric inversions allowed us to hypothesize that genetic differentiation is initiated by the suppression of recombination within inverted segments, and that the accumulation of multiple pericentric inversions reinforces genetic isolation leading to subsequent speciation. Finally, the low sequence divergences distinguishing karyotypically distinct sibling species within Arvicanthis and Mastomys emphasizes the power of combining cytogenetic and molecular approaches for the characterization of unrecognized components of biodiversity.   
Chromosomal characterization of Arvicanthis species (Rodentia, Murinae) from western and central Africa: implications for taxonomy
A chromosome study of unstriped grass rats of the genus Arvicanthis (Rodentia, Murinae) in western and central Africa is presented. The observations extend the data available to 242 specimens from 59 localities. All individuals karyotyped belong to four karyotypic forms, or cytotypes, earlier described as ANI-1, ANI-2, ANI-3, and ANI-4 and are presumed to correspond to four distinct species. In order to provide diagnostic characters for these western and one central African Arvicanthis species, we standardized the chromosomal data available and developed a G- and C-banded chromosome nomenclature that allows easy species identification. Each form is characterized by a distinct geographical distribution, roughly following the biogeographical domains of western Africa, although their precise limits remain to be assessed. The sole area of sympatry detected is the region of the inner delta of the Niger River, where both ANI-1 and ANI-3 can be found. It is proposed that the three western African species ANI-1, ANI-3, and ANI-4 be renamed as A. niloticus, A. ansorgei, and A. rufinus, respectively.