Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
51
result(s) for
"Anjum, Ashiq"
Sort by:
Digital Twin-Ready Earth Observation: Operationalizing GeoML for Agricultural CO2 Flux Monitoring at Field Scale
2025
Operationalizing Earth Observation (EO)-based Machine Learning (ML) algorithms (or GeoML) for ingestion in environmental Digital Twins remains a challenging task due to the complexities associated with balancing real-time inference with cost, data, and infrastructure requirements. In the field of GHG monitoring, most GeoML models of land use CO2 fluxes remain at the proof-of-concept stage, limiting their use in policy and land management for net-zero goals. In this study, we develop and demonstrate a Digital Twin-ready framework to operationalize a pre-trained Random Forest model that estimates the Net Ecosystem Exchange of CO2 (NEE) from drained peatlands into a biweekly, field-scale CO2 flux monitoring system using EO and weather data. The system achieves an average response time of 6.12 s, retains 98% accuracy of the underlying model, and predicts the NEE of CO2 with an R2 of 0.76 and NRMSE of 8%. It is characterized by hybrid data ingestion (combining non-time-critical and real-time retrieval), automated biweekly data updates, efficient storage, and a user-friendly front-end. The underlying framework, which is part of an operational Digital Twin under the UK Research & Innovation AI for Net Zero project consortium, is built using open source tools for data access and processing (including the Copernicus Data Space Ecosystem OpenEO API and Open-Meteo API), automation (Jenkins), and GUI development (Leaflet, NiceGIU, etc.). The applicability of the system is demonstrated through running real-world use-cases relevant to farmers and policymakers concerned with the management of arable peatlands in England. Overall, the lightweight, modular framework presented here integrates seamlessly into Digital Twins and is easily adaptable to other GeoMLs, providing a practical foundation for operational use in environmental monitoring and decision-making.
Journal Article
Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study
2021
Recent developments in cloud computing and the Internet of Things have enabled smart environments, in terms of both monitoring and actuation. Unfortunately, this often results in unsustainable cloud-based solutions, whereby, in the interest of simplicity, a wealth of raw (unprocessed) data are pushed from sensor nodes to the cloud. Herein, we advocate the use of machine learning at sensor nodes to perform essential data-cleaning operations, to avoid the transmission of corrupted (often unusable) data to the cloud. Starting from a public pollution dataset, we investigate how two machine learning techniques (kNN and missForest) may be embedded on Raspberry Pi to perform data imputation, without impacting the data collection process. Our experimental results demonstrate the accuracy and computational efficiency of edge-learning methods for filling in missing data values in corrupted data series. We find that kNN and missForest correctly impute up to 40% of randomly distributed missing values, with a density distribution of values that is indistinguishable from the benchmark. We also show a trade-off analysis for the case of bursty missing values, with recoverable blocks of up to 100 samples. Computation times are shorter than sampling periods, allowing for data imputation at the edge in a timely manner.
Journal Article
Automated visual quality assessment for virtual and augmented reality based digital twins
2024
Virtual and augmented reality digital twins are becoming increasingly prevalent in a number of industries, though the production of digital-twin systems applications is still prohibitively expensive for many smaller organisations. A key step towards reducing the cost of digital twins lies in automating the production of 3D assets, however efforts are complicated by the lack of suitable automated methods for determining the visual quality of these assets. While visual quality assessment has been an active area of research for a number of years, few publications consider this process in the context of asset creation in digital twins. In this work, we introduce an automated decimation procedure using machine learning to assess the visual impact of decimation, a process commonly used in the production of 3D assets which has thus far been underrepresented in the visual assessment literature. Our model combines 108 geometric and perceptual metrics to determine if a 3D object has been unacceptably distorted during decimation. Our model is trained on almost 4, 000 distorted meshes, giving a significantly wider range of applicability than many models in the literature. Our results show a precision of over 97% against a set of test models, and performance tests show our model is capable of performing assessments within 2 minutes on models of up to 25, 000 polygons. Based on these results we believe our model presents both a significant advance in the field of visual quality assessment and an important step towards reducing the cost of virtual and augmented reality-based digital-twins.
Journal Article
Machine-Learning-Based Side-Channel Evaluation of Elliptic-Curve Cryptographic FPGA Processor
by
Anjum, Ashiq
,
Mehrabi, Mohamad Ali
,
Mukhtar, Naila
in
Algorithms
,
Artificial intelligence
,
Classification
2019
Security of embedded systems is the need of the hour. A mathematically secure algorithm runs on a cryptographic chip on these systems, but secret private data can be at risk due to side-channel leakage information. This research focuses on retrieving secret-key information, by performing machine-learning-based analysis on leaked power-consumption signals, from Field Programmable Gate Array (FPGA) implementation of the elliptic-curve algorithm captured from a Kintex-7 FPGA chip while the elliptic-curve cryptography (ECC) algorithm is running on it. This paper formalizes the methodology for preparing an input dataset for further analysis using machine-learning-based techniques to classify the secret-key bits. Research results reveal how pre-processing filters improve the classification accuracy in certain cases, and show how various signal properties can provide accurate secret classification with a smaller feature dataset. The results further show the parameter tuning and the amount of time required for building the machine-learning models.
Journal Article
The least-used key selection method for information retrieval in large-scale Cloud-based service repositories
2022
As the number of devices connected to the Internet of Things (IoT) increases significantly, it leads to an exponential growth in the number of services that need to be processed and stored in the large-scale Cloud-based service repositories. An efficient service indexing model is critical for service retrieval and management of large-scale Cloud-based service repositories. The multilevel index model is the state-of-art service indexing model in recent years to improve service discovery and combination. This paper aims to optimize the model to consider the impact of unequal appearing probability of service retrieval request parameters and service input parameters on service retrieval and service addition operations. The least-used key selection method has been proposed to narrow the search scope of service retrieval and reduce its time. The experimental results show that the proposed least-used key selection method improves the service retrieval efficiency significantly compared with the designated key selection method in the case of the unequal appearing probability of parameters in service retrieval requests under three indexing models.
Journal Article
Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage
by
Davies-Tagg, Dominic
,
Anjum, Ashiq
,
Yaseen, Muhammad Usman
in
Algorithms
,
Cold
,
data temperature
2024
Data temperature is a response to the ever-growing amount of data. These data have to be stored, but they have been observed that only a small portion of the data are accessed more frequently at any one time. This leads to the concept of hot and cold data. Cold data can be migrated away from high-performance nodes to free up performance for higher priority data. Existing studies classify hot and cold data primarily on the basis of data age and usage frequency. We present this as a limitation in the current implementation of data temperature. This is due to the fact that age automatically assumes that all new data have priority and that usage is purely reactive. We propose new variables and conditions that influence smarter decision-making on what are hot or cold data and allow greater user control over data location and their movement. We identify new metadata variables and user-defined variables to extend the current data temperature value. We further establish rules and conditions for limiting unnecessary movement of the data, which helps to prevent wasted input output (I/O) costs. We also propose a hybrid algorithm that combines existing variables and new variables and conditions into a single data temperature. The proposed system provides higher accuracy, increases performance, and gives greater user control for optimal positioning of data within multi-tiered storage solutions.
Journal Article
Data Intensive and Network Aware (DIANA) Grid Scheduling
by
Ali, Arshad
,
McClatchey, Richard
,
Anjum, Ashiq
in
Computation
,
Decisions
,
Performance degradation
2007
In Grids scheduling decisions are often made on the basis of jobs being either data or computation intensive: in data intensive situations jobs may be pushed to the data and in computation intensive situations data may be pulled to the jobs. This kind of scheduling, in which there is no consideration of network characteristics, can lead to performance degradation in a Grid environment and may result in large processing queues and job execution delays due to site overloads. In this paper we describe a Data Intensive and Network Aware (DIANA) meta-scheduling approach, which takes into account data, processing power and network characteristics when making scheduling decisions across multiple sites. Through a practical implementation on a Grid testbed, we demonstrate that queue and execution times of data-intensive jobs can be significantly improved when we introduce our proposed DIANA scheduler. The basic scheduling decisions are dictated by a weighting factor for each potential target location which is a calculated function of network characteristics, processing cycles and data location and size. The job scheduler provides a global ranking of the computing resources and then selects an optimal one on the basis of this overall access and execution cost. The DIANA approach considers the Grid as a combination of active network elements and takes network characteristics as a first class criterion in the scheduling decision matrix along with computations and data. The scheduler can then make informed decisions by taking into account the changing state of the network, locality and size of the data and the pool of available processing cycles.
Journal Article
Towards cloud based big data analytics for smart future cities
by
Khan, Zaheer
,
Anjum, Ashiq
,
Soomro, Kamran
in
Cities
,
Cloud computing
,
Computer Communication Networks
2015
A large amount of land-use, environment, socio-economic, energy and transport data is generated in cities. An integrated perspective of managing and analysing such big data can answer a number of science, policy, planning, governance and business questions and support decision making in enabling a smarter environment. This paper presents a theoretical and experimental perspective on the smart cities focused big data management and analysis by proposing a cloud-based analytics service. A prototype has been designed and developed to demonstrate the effectiveness of the analytics service for big data analysis. The prototype has been implemented using Hadoop and Spark and the results are compared. The service analyses the Bristol Open data by identifying correlations between selected urban environment indicators. Experiments are performed using Hadoop and Spark and results are presented in this paper. The data pertaining to quality of life mainly crime and safety & economy and employment was analysed from the data catalogue to measure the indicators spread over years to assess positive and negative trends.
Journal Article
Digital Twin-Ready Earth Observation: Operationalizing GeoML for Agricultural COsub.2 Flux Monitoring at Field Scale
by
Ali, Muhammad
,
Khan, Asima
,
Anjum, Ashiq
in
Agricultural industry
,
Environmental monitoring
,
Greenhouse gases
2025
What are the main findings? * An operational framework for implementing GeoML within Digital Twin systems. * Demonstrated through the deployment of a pre-trained ML model to provide field-scale actionable insights on CO[sub.2] fluxes within seconds. An operational framework for implementing GeoML within Digital Twin systems. Demonstrated through the deployment of a pre-trained ML model to provide field-scale actionable insights on CO[sub.2] fluxes within seconds. What are the implications of the main finding? * Lightweight, modular, and open source design for scalability and adaptability. * Provides a practical foundation for the operational use of GeoML in agricultural monitoring and decision-making. Lightweight, modular, and open source design for scalability and adaptability. Provides a practical foundation for the operational use of GeoML in agricultural monitoring and decision-making. Operationalizing Earth Observation (EO)-based Machine Learning (ML) algorithms (or GeoML) for ingestion in environmental Digital Twins remains a challenging task due to the complexities associated with balancing real-time inference with cost, data, and infrastructure requirements. In the field of GHG monitoring, most GeoML models of land use CO[sub.2] fluxes remain at the proof-of-concept stage, limiting their use in policy and land management for net-zero goals. In this study, we develop and demonstrate a Digital Twin-ready framework to operationalize a pre-trained Random Forest model that estimates the Net Ecosystem Exchange of CO[sub.2] (NEE) from drained peatlands into a biweekly, field-scale CO[sub.2] flux monitoring system using EO and weather data. The system achieves an average response time of 6.12 s, retains 98% accuracy of the underlying model, and predicts the NEE of CO[sub.2] with an R[sup.2] of 0.76 and NRMSE of 8%. It is characterized by hybrid data ingestion (combining non-time-critical and real-time retrieval), automated biweekly data updates, efficient storage, and a user-friendly front-end. The underlying framework, which is part of an operational Digital Twin under the UK Research & Innovation AI for Net Zero project consortium, is built using open source tools for data access and processing (including the Copernicus Data Space Ecosystem OpenEO API and Open-Meteo API), automation (Jenkins), and GUI development (Leaflet, NiceGIU, etc.). The applicability of the system is demonstrated through running real-world use-cases relevant to farmers and policymakers concerned with the management of arable peatlands in England. Overall, the lightweight, modular framework presented here integrates seamlessly into Digital Twins and is easily adaptable to other GeoMLs, providing a practical foundation for operational use in environmental monitoring and decision-making.
Journal Article
On the structure of periodic complex Horadam orbits
by
Larcombe, Peter J.
,
Anjum, Ashiq
,
Bagdasar, Ovidiu D.
in
Fibonacci numbers
,
Geometric planes
,
Integers
2016
Numerous geometric patterns identified in nature, art or science can be generated from recurrent sequences, such as for example certain fractals or Fermat's spiral. Fibonacci numbers in particular have been used to design search techniques, pseudo random-number generators and data structures. Complex Horadam sequences are a natural extension of Fibonacci sequence to complex numbers, involving four parameters (two initial values and two in the defining recursion), therefore successive sequence terms can be visualized in the complex plane. Here, a classification of the periodic orbits is proposed, based on divisibility relations between orders of generators (roots of the characteristic polynomial). Regular star polygons, bipartite graphs and multisymmetric patterns can be recovered for selected parameter values. Some applications are also suggested.
Journal Article