Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
64 result(s) for "Annen, Jitka"
Sort by:
Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning
Consciousness can be defined by two components: arousal (wakefulness) and awareness (subjective experience). However, neurophysiological consciousness metrics able to disentangle between these components have not been reported. Here, we propose an explainable consciousness indicator (ECI) using deep learning to disentangle the components of consciousness. We employ electroencephalographic (EEG) responses to transcranial magnetic stimulation under various conditions, including sleep ( n  = 6), general anesthesia ( n  = 16), and severe brain injury ( n  = 34). We also test our framework using resting-state EEG under general anesthesia ( n  = 15) and severe brain injury ( n  = 34). ECI simultaneously quantifies arousal and awareness under physiological, pharmacological, and pathological conditions. Particularly, ketamine-induced anesthesia and rapid eye movement sleep with low arousal and high awareness are clearly distinguished from other states. In addition, parietal regions appear most relevant for quantifying arousal and awareness. This indicator provides insights into the neural correlates of altered states of consciousness. The authors propose an explainable consciousness indicator using deep learning to quantify arousal and awareness under sleep, anesthesia, and in patients with disorders of consciousness.
Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics
Low-level states of consciousness are characterized by disruptions of brain activity that sustain arousal and awareness. Yet, how structural, dynamical, local and network brain properties interplay in the different levels of consciousness is unknown. Here, we study fMRI brain dynamics from patients that suffered brain injuries leading to a disorder of consciousness and from healthy subjects undergoing propofol-induced sedation. We show that pathological and pharmacological low-level states of consciousness display less recurrent, less connected and more segregated synchronization patterns than conscious state. We use whole-brain models built upon healthy and injured structural connectivity to interpret these dynamical effects. We found that low-level states of consciousness were associated with reduced network interactions, together with more homogeneous and more structurally constrained local dynamics. Notably, these changes lead the structural hub regions to lose their stability during low-level states of consciousness, thus attenuating the differences between hubs and non-hubs brain dynamics.López-González et al study the fMRI brain dynamics and their underlying mechanism from patients that suffered brain injuries leading to a disorder of consciousness as well as from healthy subjects undergoing propofol-induced sedation. They show that pathological and pharmacological low-level states of consciousness display disrupted synchronization patterns, higher constraint to the anatomy and a loss of heterogeneity and stability in the structural hubs compared to conscious states.
Lateral frontoparietal effective connectivity differentiates and predicts state of consciousness in a cohort of patients with traumatic disorders of consciousness
Neuroimaging studies have suggested an important role for the default mode network (DMN) in disorders of consciousness (DoC). However, the extent to which DMN connectivity can discriminate DoC states–unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)–is less evident. Particularly, it is unclear whether effective DMN connectivity, as measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this extends to UWS patients with potentially “covert” awareness (minimally conscious star, MCS*) indexed by voluntary brain activity in conjunction with partially preserved frontoparietal metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, we tested the classification performance of the DCM models demonstrating that connectivity between medial prefrontal and left parietal sources reliably discriminates UWS PET- from MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* patients as conscious subjects with high posterior probability (pp > .92). These results identify specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-based effective connectivity for identifying patients with potential covert awareness.
The effect of prolonged spaceflight on cerebrospinal fluid and perivascular spaces of astronauts and cosmonauts
Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.
Disruption in structural–functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness
Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace (GNW) and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, the prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, that is so-called eigenmodes, was supplemented as potential markers. By analysing time-resolved functional connectivity from functional MRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and subcortical fronto-temporoparietal network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the GNW theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness.
Personalized models of disorders of consciousness reveal complementary roles of connectivity and local parameters in diagnosis and prognosis
The study of disorders of consciousness (DoC) is very complex because patients suffer from a wide variety of lesions, affected brain mechanisms, different severity of symptoms, and are unable to communicate. Combining neuroimaging data and mathematical modeling can help us quantify and better describe some of these alterations. The goal of this study is to provide a new analysis and modeling pipeline for fMRI data leading to new diagnosis and prognosis biomarkers at the individual patient level. To do so, we project patients’ fMRI data into a low-dimension latent-space . We define the latent space’s dimension as the smallest dimension able to maintain the complexity, non-linearities, and information carried by the data, according to different criteria that we detail in the first part. This dimensionality reduction procedure then allows us to build biologically inspired latent whole-brain models that can be calibrated at the single-patient level. In particular, we propose a new model inspired by the regulation of neuronal activity by astrocytes in the brain. This modeling procedure leads to two types of model-based biomarkers (MBBs) that provide novel insight at different levels: (1) the connectivity matrices bring us information about the severity of the patient’s diagnosis, and, (2) the local node parameters correlate to the patient’s etiology, age and prognosis. Altogether, this study offers a new data processing framework for resting-state fMRI which provides crucial information regarding DoC patients diagnosis and prognosis. Finally, this analysis pipeline could be applied to other neurological conditions.
Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation
A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.
Autonomic nervous system modulation during self-induced non-ordinary states of consciousness
Self-induced cognitive trance (SICT) is a voluntary non-ordinary state of consciousness characterized by a lucid yet narrowed awareness of the external surroundings. It involves a hyper-focused immersive experience of flow, expanded inner imagery, modified somatosensory processing, and an altered perception of self and time. SICT is gaining attention due to its potential clinical applications. Similar states of non-ordinary state of consciousness, such as meditation, hypnosis, and psychedelic experiences, have been reported to induce changes in the autonomic nervous system. However, the functioning of the autonomic nervous system during SICT remains poorly understood. In this study, we aimed to investigate the impact of SICT on the cardiac and respiratory signals of 25 participants proficient in SICT. To accomplish this, we measured various metrics of heart rate variability (HRV) and respiration rate variability (RRV) in three conditions: resting state, SICT, and a mental imagery task. Subsequently, we employed a machine learning framework utilizing a linear discriminant analysis classifier and a cross-validation scheme to identify the features that exhibited the best discrimination between these three conditions. The results revealed that during SICT, participants experienced an increased heart rate and a decreased level of high-frequency (HF) HRV compared to the control conditions. Additionally, specific increases in respiratory amplitude, phase ratio, and RRV were observed during SICT in comparison to the other conditions. These findings suggest that SICT is associated with a reduction in parasympathetic activity, indicative of a hyperarousal state of the autonomic nervous system during SICT.
Brain Tissue–Volume Changes in Cosmonauts
Ten cosmonauts, who spent an average of 189 days in space, had changes in brain volumes — mainly decreased cortical volume and increased CSF subarachnoid and ventricular volume — with some changes persisting up to an average of 7 months after return to Earth.