Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
322 result(s) for "Ansmann, A."
Sort by:
Fine and coarse dust separation with polarization lidar
The polarization-lidar photometer networking (POLIPHON) method for separating dust and non-dust aerosol backscatter and extinction, volume, and mass concentration is extended to allow for a height-resolved separation of fine-mode and coarse-mode dust properties in addition. The method is applied to a period with complex aerosol layering of fine-mode background dust from Turkey and Arabian desert dust from Syria. The observation was performed at the combined European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) site of Limassol (34.7° N, 33° E), Cyprus, in September 2011. The dust profiling methodology and case studies are presented. Consistency between the column-integrated optical properties obtained with sun/sky photometer and the respective results derived by means of the new lidar-based method corroborate the applicability of the extended POLIPHON version.
Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies
A lidar method is presented that permits the estimation of height profiles of ice nuclei concentrations (INC) in desert dust layers. The polarization lidar technique is applied to separate dust and non-dust backscatter and extinction coefficients. The desert dust extinction coefficients σd are then converted to aerosol particle number concentrations APC280 which consider particles with radius > 280 nm only. By using profiles of APC280 and ambient temperature T along the laser beam, the profile of INC can be estimated within a factor of 3 by means of APC-T-INC parameterizations from the literature. The observed close relationship between σd at 500 nm and APC280 is of key importance for a successful INC retrieval. We studied this link by means of AERONET (Aerosol Robotic Network) sun/sky photometer observations at Morocco, Cabo Verde, Barbados, and Cyprus during desert dust outbreaks. The new INC retrieval method is applied to lidar observations of dust layers with the spaceborne lidar CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) during two overpasses over the EARLINET (European Aerosol Research Lidar Network) lidar site of the Cyprus University of Technology (CUT), Limassol (34.7° N, 33° E), Cyprus. The good agreement between the CALIOP and CUT lidar retrievals of σd, APC280, and INC profiles corroborates the potential of CALIOP to provide 3-D global desert dust APC280 and INC data sets.
Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements
Dual-wavelength Raman and depolarization lidar observations were performed during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment in Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust after transport across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths at 532 nm of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km in height. The contribution of the pure dust layer was about half of the total aerosol optical depth at 532 nm. The total dust contribution was about 50–70 % of the total aerosol optical depth at 532 nm. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio, wavelength-independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.
Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes
The polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajökull volcanic aerosols in 2010 is extended to cover Saharan dust events as well. Furthermore, new volcanic dust observations performed after the Grimsvötn volcanic eruptions in 2011 are presented. The retrieval of particle mass concentrations requires mass-specific extinction coefficients. Therefore, a review of recently published mass-specific extinction coefficients for Saharan dust and volcanic dust is given. Case studies of four different scenarios corroborate the applicability of the profiling technique: (a) Saharan dust outbreak to central Europe, (b) Saharan dust plume mixed with biomass-burning smoke over Cape Verde, and volcanic aerosol layers originating from (c) the Eyjafjallajökull eruptions in 2010 and (d) the Grimsvötn eruptions in 2011. Strong differences in the vertical aerosol layering, aerosol mixing, and optical properties are observed for the different volcanic events.
Optimizing CALIPSO Saharan dust retrievals
We demonstrate improvements in CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) dust extinction retrievals over northern Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of the dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and collocated AERONET (Aerosol Robotic Network) measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS (Moderate-Resolution Imaging Spectroradiometer) collocated aerosol optical depth (AOD) product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1) by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2) by applying an averaging scheme that includes zero extinction values for the nondust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and collocated dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per subregion examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model makes this dataset an ideal candidate for the provision of an accurate and robust multiyear dust climatology over northern Africa and Europe.
Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008
Multiwavelength aerosol Raman lidar in combination with polarization lidar at Praia (14.9°N, 23.5°W), Cape Verde, is used to separate the optical properties of desert dust and biomass burning particles as a function of height in the mixed dust and smoke plumes over the tropical North Atlantic west of the African continent. The advanced lidar method furthermore permits the derivation of the single‐scattering albedo and microphysical properties of the African biomass burning smoke. A case study is presented to discuss the potential of the technique. The observations were performed during the Saharan Mineral Dust Experiment (SAMUM) in January and February 2008. The height‐resolved lidar results are compared with column‐integrated products obtained with Aerosol Robotic Network Sun photometer. Good agreement is found. Furthermore, the findings are compared with lidar and aircraft observations recently performed in western Africa and with our previous lidar observations taken in tropical and subtropical regions of southern and eastern Asia. The SAMUM case study represents typical aerosol layering conditions in the tropical outflow regime of western Africa during winter season. Above a dense desert dust layer (with an optical depth of about 0.25 at 532 nm) which reached to 1500 m, a lofted layer consisting of desert dust (0.08 optical depth) and biomass burning smoke (0.24 optical depth) extended from 1500 to 5000 m height. Extinction values were 20 ± 10 Mm−1 (desert dust) and 20–80 Mm−1 (smoke) in the lofted plume. The smoke extinction‐to‐backscatter ratios were rather high, with values up to more than 100 sr, effective radii ranged from 0.15 to 0.35 μm, and the smoke single‐scattering albedo was partly below 0.7.
The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – aerosol properties and black carbon mixing state
During the CONCERT 2011 field experiment with the DLR research aircraft Falcon, an enhanced aerosol layer with particle linear depolarization ratios of 6–8% at 532 nm was observed at altitudes above 10 km over northeast Germany on 16 September 2011. Dispersion simulations with HYSPILT suggest that the elevated aerosol layer originated from the Pagami Creek forest fire in Minnesota, USA, which caused pyro-convective uplift of particles and gases. The 3–4 day-old smoke plume had high total refractory black carbon (rBC) mass concentrations of 0.03–0.35 μg m−3 at standard temperature and pressure (STP) with rBC mass equivalent diameter predominantly smaller than 130 nm. Assuming a core-shell particle structure, the BC cores exhibit very thick (median: 105–136 nm) BC-free coatings. A large fraction of the BC-containing particles disintegrated into a BC-free fragment and a BC fragment while passing through the laser beam of the Single Particle Soot Photometer (SP2). In this study, the disintegration is a result of very thick coatings around the BC cores. This is in contrast to a previous study in a forest-fire plume, where it was hypothesized to be a result of BC cores being attached to a BC-free particle. For the high-altitude forest-fire aerosol layer observed in this study, increased mass specific light-absorption cross sections of BC can be expected due to the very thick coatings around the BC cores, while this would not be the case for the attached-type morphology. We estimate the BC mass import from the Pagami Creek forest fire into the upper troposphere/lower stratosphere (UTLS) region (best estimate: 25 Mg rBC). A comparison to black carbon emission rates from aviation underlines the importance of pyro-convection on the BC load in the UTLS region. Our study provides detailed information on the microphysics and the mixing state of BC in the forest-fire aerosol layer in the upper troposphere that can be used to better understand and investigate the radiative impact of such upper tropospheric aerosol layers.
Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus
Four-year observations (2010–2014) with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E), Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR), measured with lidar, contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (> 4 days after emission). We found significant PDR differences with values from 9 to 18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13 % when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. travel time (spatial distance between Limassol and last fire area), PDR decreased strongly from initial values around 16–18% (1 day travel) to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Computation of particle extinction coefficient and mass concentrations, derived from the lidar observations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions on the order of 10% (for PDR =4%, travel times > 4 days) and 50% (PDR =15%, 1 day travel time) and respective mass-related dust fractions of 25% (PDR =4%) to 80% (PDR =15%). Biomass burning should therefore be considered as another source of free tropospheric soil dust.
EARLINET: towards an advanced sustainable European aerosol lidar network
The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.
Strong aerosol–cloud interaction in altocumulus during updraft periods: lidar observations over central Europe
For the first time, a liquid-water cloud study of the aerosol–cloud-dynamics relationship, solely based on lidar, was conducted. Twenty-nine cases of pure liquid-water altocumulus layers were observed with a novel dual-field-of-view Raman lidar over the polluted central European site of Leipzig, Germany, between September 2010 and September 2012. By means of the novel Raman lidar technique, cloud properties such as the droplet effective radius and cloud droplet number concentration (CDNC) in the lower part of altocumulus layers are obtained. The conventional aerosol Raman lidar technique provides the aerosol extinction coefficient (used as aerosol proxy) below cloud base. A collocated Doppler lidar measures the vertical velocity at cloud base and thus updraft and downdraft occurrence. Here, we present the key results of our statistical analysis of the 2010–2012 observations. Besides a clear aerosol effect on cloud droplet number concentration in the lower part of the altocumulus layers during updraft periods, turbulent mixing and entrainment of dry air is assumed to be the main reason for the found weak correlation between aerosol proxy and CDNC higher up in the cloud. The corresponding aerosol–cloud interaction parameter based on changes in cloud droplet number concentration with aerosol loading was found to be close to 0.8 at 30–70 m above cloud base during updraft periods and below 0.4 when ignoring vertical-wind information in the analysis. Our findings are extensively compared with literature values and agree well with airborne observations.