Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
108 result(s) for "Antal, Tibor"
Sort by:
Cancer recurrence times from a branching process model
As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.
Evolutionary dynamics of cancer in response to targeted combination therapy
In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma patients receiving vemurafenib. We then applied our model to an independent set of pancreatic, colorectal, and melanoma cancer patients with metastatic disease. We find that dual therapy results in long-term disease control for most patients, if there are no single mutations that cause cross-resistance to both drugs; in patients with large disease burden, triple therapy is needed. We also find that simultaneous therapy with two drugs is much more effective than sequential therapy. Our results provide realistic expectations for the efficacy of new drug combinations and inform the design of trials for new cancer therapeutics. As medicine becomes increasingly personalized, more and more emphasis is being placed on the development of therapies that target specific cancer-causing mutations. But while many of these drugs are effective in the short term, and do extend patient lives, tumors tend to evolve resistance to them within a few months. The key problem is that large tumors are genetically diverse. This means that for any given treatment, there is likely to be a small population of cells within the tumor that is resistant to the effects of the drug. When the drug is given to a patient, these cells will survive and multiply and this will lead ultimately to treatment failure. Given that a single drug is therefore highly unlikely to eradicate a tumor, combinations of two or more drugs may offer a higher chance of cure. This approach has been effective in the treatment of HIV as well as certain forms of leukemia. Here, Bozic et al. present a mathematical model designed to predict the effects of combination targeted therapies on tumors, based on the data obtained from 20 melanoma (skin cancer) patients. Their model revealed that if even 1 of the 6.6 billion base pairs of DNA present in a human diploid cell has undergone a mutation that confers resistance to each of two drugs, treatment with those drugs will not lead to sustained improvement for the majority of patients. This confirms the need to develop drugs that target distinct pathways. The model also reveals that combination therapy with two drugs given simultaneously is far more effective than sequential therapy where the drugs are used one after the other. Indeed, the model of Bozic et al. indicates that sequential treatment offers no chance of a cure, even when there are no cross-resistance mutations present, whereas combination therapy offers some hope of a cure, even in the presence of cross-resistance mutations. By emphasizing the need to develop drugs that target distinct pathways, and to administer them in combination rather than sequentially, the study by Bozic et al. offers valuable advice for drug development and the design of clinical trials, as well as for clinical practice.
Evolutionary dynamics in structured populations
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called 'spatial selection': cooperators prevail against defectors by clustering in physical or other spaces.
Accumulation of driver and passenger mutations during tumor progression
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development—providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small—0.004 ± 0.0004—and has major implications for experimental cancer research.
Distant metastasis occurs late during the genetic evolution of pancreatic cancer
A timeline for pancreatic cancer Christine Iacobuzio-Donahue and colleagues use whole-genome exome sequencing to analyse primary pancreatic cancers and one or more metastases from the same patients, and find that tumours are composed of distinct subclones. The authors also determine the evolutionary maps by which metastatic cancer clones have evolved within the primary tumour, and estimate the timescales of tumour progression. On the basis of these data, they estimate a mean period of 11.8 years between the initiation of pancreatic tumorigenesis and the formation of the parental, non-metastatic tumour, and a further 6.8 years for the index metastasis clone to arise. These data point to a potentially large window of opportunity during which it might be possible to detect the cancer in a relatively early form. Peter Campbell and colleagues use next-generation sequencing to detect chromosomal rearrangements in 13 patients with pancreatic cancer. The results reveal considerable inter-patient heterogeneity and indicate ongoing genomic instability and evolution during the development of metastases. But for most of the patients studied, more than half of the genetic rearrangements found were present in all metastases and the primary tumour, making them potential targets for therapeutic intervention at early and late stages of the disease. Here, whole-genome sequencing has been used to analyse primary pancreatic tumours and one or more metastases from the same patients. The findings show that tumours are composed of several geographically distinct subclones, and allow maps to be produced showing how metastatic cancer clones evolve within the primary tumour. Moreover, a quantitative analysis of the timing of the genetic evolution of pancreatic cancer has been performed. Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated 1 , 2 , is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy 3 . Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.
Competing evolutionary paths in growing populations with applications to multidrug resistance
Investigating the emergence of a particular cell type is a recurring theme in models of growing cellular populations. The evolution of resistance to therapy is a classic example. Common questions are: when does the cell type first occur, and via which sequence of steps is it most likely to emerge? For growing populations, these questions can be formulated in a general framework of branching processes spreading through a graph from a root to a target vertex. Cells have a particular fitness value on each vertex and can transition along edges at specific rates. Vertices represent cell states, say genotypes or physical locations, while possible transitions are acquiring a mutation or cell migration. We focus on the setting where cells at the root vertex have the highest fitness and transition rates are small. Simple formulas are derived for the time to reach the target vertex and for the probability that it is reached along a given path in the graph. We demonstrate our results on several scenarios relevant to the emergence of drug resistance, including: the orderings of resistance-conferring mutations in bacteria and the impact of imperfect drug penetration in cancer.
Fixation of Strategies for an Evolutionary Game in Finite Populations
A stochastic evolutionary dynamics of two strategies given by 2x 2 matrix games is studied in finite populations. We focus on stochastic properties of fixation: how a strategy represented by a single individual wins over the entire population. The process is discussed in the framework of a random walk with site dependent hopping rates. The time of fixation is found to be identical for both strategies in any particular game. The asymptotic behavior of the fixation time and fixation probabilities in the large population size limit is also discussed. We show that fixation is fast when there is at least one pure evolutionary stable strategy (ESS) in the infinite population size limit, while fixation is slow when the ESS is the coexistence of the two strategies.
Sequential mutations in exponentially growing populations
Stochastic models of sequential mutation acquisition are widely used to quantify cancer and bacterial evolution. Across manifold scenarios, recurrent research questions are: how many cells are there with n alterations, and how long will it take for these cells to appear. For exponentially growing populations, these questions have been tackled only in special cases so far. Here, within a multitype branching process framework, we consider a general mutational path where mutations may be advantageous, neutral or deleterious. In the biologically relevant limiting regimes of large times and small mutation rates, we derive probability distributions for the number, and arrival time, of cells with n mutations. Surprisingly, the two quantities respectively follow Mittag-Leffler and logistic distributions regardless of n or the mutations’ selective effects. Our results provide a rapid method to assess how altering the fundamental division, death, and mutation rates impacts the arrival time, and number, of mutant cells. We highlight consequences for mutation rate inference in fluctuation assays.
Learning spatio-temporal patterns with Neural Cellular Automata
Neural Cellular Automata (NCA) are a powerful combination of machine learning and mechanistic modelling. We train NCA to learn complex dynamics from time series of images and Partial Differential Equation (PDE) trajectories. Our method is designed to identify underlying local rules that govern large scale dynamic emergent behaviours. Previous work on NCA focuses on learning rules that give stationary emergent structures. We extend NCA to capture both transient and stable structures within the same system, as well as learning rules that capture the dynamics of Turing pattern formation in nonlinear PDEs. We demonstrate that NCA can generalise very well beyond their PDE training data, we show how to constrain NCA to respect given symmetries, and we explore the effects of associated hyperparameters on model performance and stability. Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework, especially for modelling biological pattern formation.
Evolutionary dynamics in set structured populations
Evolutionary dynamics are strongly affected by population structure. The outcome of an evolutionary process in a well-mixed population can be very different from that in a structured population. We introduce a powerful method to study dynamical population structure: evolutionary set theory. The individuals of a population are distributed over sets. Individuals interact with others who are in the same set. Any 2 individuals can have several sets in common. Some sets can be empty, whereas others have many members. Interactions occur in terms of an evolutionary game. The payoff of the game is interpreted as fitness. Both the strategy and the set memberships change under evolutionary updating. Therefore, the population structure itself is a consequence of evolutionary dynamics. We construct a general mathematical approach for studying any evolutionary game in set structured populations. As a particular example, we study the evolution of cooperation and derive precise conditions for cooperators to be selected over defectors.