Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
105
result(s) for
"Antoniades, Charalambos"
Sort by:
The role of adipose tissue in cardiovascular health and disease
by
Oikonomou, Evangelos K
,
Antoniades, Charalambos
in
Biology
,
Cardiovascular system
,
Insulin resistance
2019
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell–cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Journal Article
Perivascular adipose tissue and coronary atherosclerosis
by
Oikonomou, Evangelos K
,
Antoniades, Charalambos
,
Mancio, Jennifer
in
Adipocytes
,
Adipose Tissue - metabolism
,
Adipose Tissue - pathology
2018
Adipose tissue (AT) is no longer viewed as a passive, energy-storing depot, and a growing body of evidence supports the concept that both quantitative and qualitative aspects of AT are critical in determining an individual’s cardiometabolic risk profile. Among all AT sites, perivascular AT (PVAT) has emerged as a depot with a distinctive biological significance in cardiovascular disease given its close anatomical proximity to the vasculature. Recent studies have suggested the presence of complex, bidirectional paracrine and vasocrine signalling pathways between the vascular wall and its PVAT, with far-reaching implications in cardiovascular diagnostics and therapeutics. In this review, we first discuss the biological role of PVAT in both cardiovascular health and disease, highlighting its dual pro-atherogenic and anti-atherogenic roles, as well as potential therapeutic targets in cardiovascular disease. We then review current evidence and promising new modalities on the non-invasive imaging of epicardial AT and PVAT. Specifically, we present how our expanding knowledge on the bidirectional interplay between the vascular wall and its PVAT can be translated into novel clinical diagnostics tools to assess coronary inflammation. To this end, we present the example of a new CT-based method that tracks spatial changes in PVAT phenotype to extract information about the inflammatory status of the adjacent vasculature, highlighting the numerous diagnostic and therapeutic opportunities that arise from our increased understanding of PVAT biology.
Journal Article
The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure
by
Woollard, Kevin J.
,
McPhail, Mark J. W.
,
Possamai, Lucia A.
in
Acute Disease
,
acute liver failure
,
acute-on-chronic liver failure
2018
Acute and acute-on-chronic liver failure (ALF and ACLF), though distinct clinical entities, are considered syndromes of innate immune dysfunction. Patients with ALF and ACLF display evidence of a pro-inflammatory state with local liver inflammation, features of systemic inflammatory response syndrome (SIRS) and vascular endothelial dysfunction that drive progression to multi-organ failure. In an apparent paradox, these patients are concurrently immunosuppressed, exhibiting acquired immune defects that render them highly susceptible to infections. This paradigm of tissue injury succeeded by immunosuppression is seen in other inflammatory conditions such as sepsis, which share poor outcomes and infective complications that account for high morbidity and mortality. Monocyte and macrophage dysfunction are central to disease progression of ALF and ACLF. Activation of liver-resident macrophages (Kupffer cells) by pathogen and damage associated molecular patterns leads to the recruitment of innate effector cells to the injured liver. Early monocyte infiltration may contribute to local tissue destruction during the propagation phase and results in secretion of pro-inflammatory cytokines that drive SIRS. In the hepatic microenvironment, recruited monocytes mature into macrophages following local reprogramming so as to promote resolution responses in a drive to maintain tissue integrity. Intra-hepatic events may affect circulating monocytes through spill over of soluble mediators and exposure to apoptotic cell debris during passage through the liver. Hence, peripheral monocytes show numerous acquired defects in acute liver failure syndromes that impair their anti-microbial programmes and contribute to enhanced susceptibility to sepsis. This review will highlight the cellular and molecular mechanisms by which monocytes and macrophages contribute to the pathophysiology of ALF and ACLF, considering both hepatic inflammation and systemic immunosuppression. We identify areas for further research and potential targets for immune-based therapies to treat these devastating conditions.
Journal Article
MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure
2018
ObjectiveAcute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response.DesignFlow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer−/−) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice.ResultsWe demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer−/− mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance.ConclusionsWe identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury.
Journal Article
Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data
by
Deanfield, John
,
Griffin, Brian P
,
Flamm, Scott D
in
Adipocytes
,
Adipogenesis
,
Adipose Tissue - diagnostic imaging
2018
Coronary artery inflammation inhibits adipogenesis in adjacent perivascular fat. A novel imaging biomarker—the perivascular fat attenuation index (FAI)—captures coronary inflammation by mapping spatial changes of perivascular fat attenuation on coronary computed tomography angiography (CTA). However, the ability of the perivascular FAI to predict clinical outcomes is unknown.
In the Cardiovascular RISk Prediction using Computed Tomography (CRISP-CT) study, we did a post-hoc analysis of outcome data gathered prospectively from two independent cohorts of consecutive patients undergoing coronary CTA in Erlangen, Germany (derivation cohort) and Cleveland, OH, USA (validation cohort). Perivascular fat attenuation mapping was done around the three major coronary arteries—the proximal right coronary artery, the left anterior descending artery, and the left circumflex artery. We assessed the prognostic value of perivascular fat attenuation mapping for all-cause and cardiac mortality in Cox regression models, adjusted for age, sex, cardiovascular risk factors, tube voltage, modified Duke coronary artery disease index, and number of coronary CTA-derived high-risk plaque features.
Between 2005 and 2009, 1872 participants in the derivation cohort underwent coronary CTA (median age 62 years [range 17–89]). Between 2008 and 2016, 2040 patients in the validation cohort had coronary CTA (median age 53 years [range 19–87]). Median follow-up was 72 months (range 51–109) in the derivation cohort and 54 months (range 4–105) in the validation cohort. In both cohorts, high perivascular FAI values around the proximal right coronary artery and left anterior descending artery (but not around the left circumflex artery) were predictive of all-cause and cardiac mortality and correlated strongly with each other. Therefore, the perivascular FAI measured around the right coronary artery was used as a representative biomarker of global coronary inflammation (for prediction of cardiac mortality, hazard ratio [HR] 2·15, 95% CI 1·33–3·48; p=0·0017 in the derivation cohort, and 2·06, 1·50–2·83; p<0·0001 in the validation cohort). The optimum cutoff for the perivascular FAI, above which there is a steep increase in cardiac mortality, was ascertained as −70·1 Hounsfield units (HU) or higher in the derivation cohort (HR 9·04, 95% CI 3·35–24·40; p<0·0001 for cardiac mortality; 2·55, 1·65–3·92; p<0·0001 for all-cause mortality). This cutoff was confirmed in the validation cohort (HR 5·62, 95% CI 2·90–10·88; p<0·0001 for cardiac mortality; 3·69, 2·26–6·02; p<0·0001 for all-cause mortality). Perivascular FAI improved risk discrimination in both cohorts, leading to significant reclassification for all-cause and cardiac mortality.
The perivascular FAI enhances cardiac risk prediction and restratification over and above current state-of-the-art assessment in coronary CTA by providing a quantitative measure of coronary inflammation. High perivascular FAI values (cutoff ≥–70·1 HU) are an indicator of increased cardiac mortality and, therefore, could guide early targeted primary prevention and intensive secondary prevention in patients.
British Heart Foundation, and the National Institute of Health Research Oxford Biomedical Research Centre.
Journal Article
PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury
by
Kudo, Hiromi
,
Husbyn, Hannah C.
,
Mukherjee, Sujit K.
in
Acetaminophen
,
Acetaminophen - adverse effects
,
Acetaminophen - therapeutic use
2021
Patients with acute liver failure (ALF) have systemic innate immune suppression and increased susceptibility to infections. Programmed cell death 1 (PD-1) expression by macrophages has been associated with immune suppression during sepsis and cancer. We therefore examined the role of the programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) pathway in regulating Kupffer cell (KC) inflammatory and antimicrobial responses in acetaminophen-induced (APAP-induced) acute liver injury. Using intravital imaging and flow cytometry, we found impaired KC bacterial clearance and systemic bacterial dissemination in mice with liver injury. We detected increased PD-1 and PD-L1 expression in KCs and lymphocyte subsets, respectively, during injury resolution. Gene expression profiling of PD-1+ KCs revealed an immune-suppressive profile and reduced pathogen responses. Compared with WT mice, PD-1-deficient mice and anti-PD-1-treated mice with liver injury showed improved KC bacterial clearance, a reduced tissue bacterial load, and protection from sepsis. Blood samples from patients with ALF revealed enhanced PD-1 and PD-L1 expression by monocytes and lymphocytes, respectively, and that soluble PD-L1 plasma levels could predict outcomes and sepsis. PD-1 in vitro blockade restored monocyte functionality. Our study describes a role for the PD-1/PD-L1 axis in suppressing KC and monocyte antimicrobial responses after liver injury and identifies anti-PD-1 immunotherapy as a strategy to reduce infection susceptibility in ALF.
Journal Article
Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: a randomized controlled trial
2023
Background
Identifying and reducing cardiometabolic risks driven by obesity remains a healthcare challenge. The metabolic syndrome is associated with abdominal obesity and inflammation and is predictive of long-term risk of developing type 2 diabetes and cardiovascular disease in otherwise healthy individuals living with obesity. Therefore, we investigated the effects of adherent exercise, a glucagon-like peptide 1 receptor agonist (GLP-1 RA), or the combination on severity of metabolic syndrome, abdominal obesity, and inflammation following weight loss.
Methods
This was a randomized, double-blinded, placebo-controlled trial. During an 8-week low-calorie diet (800 kcal/day), 195 adults with obesity and without diabetes lost 12% in body weight. Participants were then evenly randomized to four arms of one-year treatment with:
placebo
, moderate-to-vigorous
exercise
(minimum of 150 min/week of moderate-intensity or 75 min/week of vigorous-intensity aerobic physical activity or an equivalent combination of both), the GLP-1 RA
liraglutide
3.0 mg/day, or a
combination
(exercise + liraglutide). A total of 166 participants completed the trial. We assessed the prespecified secondary outcome metabolic syndrome severity z-score (MetS-Z), abdominal obesity (estimated as android fat via dual-energy X-ray absorptiometry), and inflammation marker high-sensitivity C-reactive protein (hsCRP). Statistical analysis was performed on 130 participants adherent to the study interventions (per-protocol population) using a mixed linear model.
Results
The diet-induced weight loss decreased the severity of MetS-Z from 0.57 to 0.06, which was maintained in the placebo and exercise groups after one year. MetS-Z was further decreased by liraglutide (− 0.37, 95% CI − 0.58 to − 0.16, P < 0.001) and the combination treatment (− 0.48, 95% CI − 0.70 to − 0.25, P < 0.001) compared to placebo. Abdominal fat percentage decreased by 2.6, 2.8, and 6.1 percentage points in the exercise, liraglutide, and combination groups compared to placebo, respectively, and hsCRP decreased only in the combination group compared with placebo (by 43%, P = 0.03).
Conclusion
The combination of adherent exercise and liraglutide treatment reduced metabolic syndrome severity, abdominal obesity, and inflammation and may therefore reduce cardiometabolic risk more than the individual treatments.
Trial registration
EudraCT number: 2015-005585-32, ClinicalTrials.gov: NCT04122716
Journal Article
Effectiveness of a novel intervention (Super Rehab) in overweight patients with atrial fibrillation (SuRe AF): protocol for a randomised controlled trial
by
Khavandi, Ali
,
Abramik, Joanna
,
Thompson, Dylan
in
Ablation
,
Atrial Fibrillation - complications
,
Atrial Fibrillation - therapy
2025
IntroductionAtrial fibrillation (AF) is the most common sustained arrhythmia worldwide, associated with significant morbidity, mortality and healthcare utilisation. AF rhythm control strategies demonstrate attrition with time. A number of modifiable AF risk factors contribute to an atrial cardiomyopathy culminating in incident AF but importantly also recurrence. We propose that a novel multidisciplinary lifestyle intervention (Super Rehab, SR) may improve symptoms and AF burden.Methods and analysisThis is a single-centre, randomised controlled study. Patients aged ≥18 years with a body mass index ≥27 kg/m2 with paroxysmal or persistent AF will be randomised 1:1 to National Health Service (NHS) usual care (UC) or to SR (together with NHS UC). SR incorporates high-intensity exercise, personalised dietary advice and AF risk factor modification. SR will be undertaken over 12 months. In addition to baseline assessments, follow-up assessments will occur at the 6, 12 and 15-month time points. The primary outcome will be the difference in AF symptom burden at 12 months between groups. Secondary outcomes include AF burden (assessed by an implantable cardiac monitor), changes to cardiac structure and function and computed tomography-based assessment of epicardial adipose tissue.Ethics and disseminationEthics approval was granted by London-Chelsea Research Ethics Committee (reference: 22/LO/0479 22/08/2022). All participants will provide written informed consent prior to enrolment. Study findings will be disseminated via presentations to relevant stakeholders, national and international conferences and open-access peer-reviewed research publications. A summary will also be communicated to the participants.Trial registration numberClinicalTrials.gov ID NCT05596175.
Journal Article