Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
207
result(s) for
"Aptroot, André"
Sort by:
A world key to the species of Anthracothecium and Pyrenula
2012
An identification key is presented for the accepted species of the lichen genera Anthracothecium (comprising 5 species) and Pyrenula (with 169 species, including 7 still undescribed). The key also contains some similar taxa and is complete for Blastodesmia (1 species), Sulcopyrenula (4 species), and Eopyrenula (6 species), but not for others such as Aptrootia, Architrypethelium, and Lithothelium, of which only the corticolous brown-spored taxa are treated. The following new combinations were found to be necessary: Anthracothecium interlatens (Nyl.) Aptroot, Pyrenula breutelii (Müll. Arg.) Aptroot, Pyrenula ceylonensis (Ajay Singh & Upreti) Aptroot, Pyrenula fusispora (Malme) Aptroot, Pyrenula gibberulosa (Vain.) Aptroot, Pyrenula lyoni (Zahlbr.) Aptroot, Pyrenula papillifera (Nyl.) Aptroot, Pyrenula platystoma (Müll. Arg.) Aptroot, Pyrenula schiffneri (Zahlbr.) Aptroot, Pyrenula welwitschii (Upreti & Ajay Singh) Aptroot, and Sulcopyrenula subglobosa (Riddle) Aptroot. Pyrenula sexluminata Aptroot is a new name for Pyrenula quinqueseptata Aptroot, and Pyrenula neosandwicensis Aptroot is a new name for Anthracothecium sandwicense Zahlbr. In addition, all known and many novel synonyms are cited, and the disposition of all other taxa in the two genera Anthracothecium (with 155 names) and Pyrenula (with 745 names) and their generic synonyms. Bogoriella was found to be an older name for Mycomicrothelia.
Journal Article
Coalescent-Based Species Delimitation Approach Uncovers High Cryptic Diversity in the Cosmopolitan Lichen-Forming Fungal Genus Protoparmelia (Lecanorales, Ascomycota)
by
Divakar, Pradeep K.
,
Crespo, Ana
,
Dal Grande, Francesco
in
Alpine environments
,
Ascomycota
,
Ascomycota - physiology
2015
Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal-arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods--BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence.
Journal Article
Flammability across the gymnosperm phylogeny: the importance of litter particle size
by
Kempen, Lute
,
Cornwell, William K
,
Aptroot, André
in
Abscission
,
Climate
,
Cycadopsida - genetics
2015
Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have ‘afterlife’ effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide‐ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first‐order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non‐Pinus Pinaceae, in which small leaves abscised singly produced dense, non‐flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle‐leaved species previously considered to be flammable in single‐leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes.
Journal Article
Global species richness prediction for Pyrenulaceae (Ascomycota: Pyrenulales), the last of the “big three” most speciose tropical microlichen families
by
Lücking, Robert
,
Aptroot André
,
Cáceres Marcela Eugenia da Silva
in
Biodiversity
,
Biological evolution
,
Ecosystems
2020
Together with Graphidaceae and Trypetheliaceae, Pyrenulaceae forms part of the \"big three\", the three most speciose, chiefly tropical microlichen families. Microlichens are the most diverse component of tropical lichen communities, with numerous species still to be discovered. Following previous analyses of Graphidaceae and Trypetheliaceae, here we present a global species richness estimate for Pyrenulaceae, using a recently devised method based on a global grid system. We refined this approach by using an iterative adjustment to estimate mean predicted grid range per species from a grid frequency histogram. We also adjusted a previously implemented randomization approach to estimate error margins. Our results showed a global estimate for Pyrenulaceae of (395–)441(–453) species world-wide, 307 of which are currently known, thus an overall predicted increase of over 40%. This includes 416 known and predicted tropical and 25 known, exclusively temperate species, the latter assumed to remain unchanged. While the robustness of the global prediction depends on accurately setting grid sampling scores, individual predicted grid richness varies according to additional factors such as evolutionary history. In addition to undescribed species contribution to predicted richness, we hypothesize that species delimitation studies in presumably widespread taxa will reveal refined species concepts with narrower ranges, thus further increasing estimated global richness. The comparison of predicted richness values for the three families Graphidaceae, Trypetheliaceae and Pyrenulaceae with regard to their evolutionary ages highlights this rather robust method as a promising tool to circumvent sampling and knowledge bias when assessing speciation and diversification patterns.
Journal Article
reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota)
2014
The subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota) is an assemblage of ecologically diverse species, ranging from mutualistic lichenised fungi to human opportunistic pathogens. Recent contributions from molecular studies have changed our understanding of the composition of this subclass. Among others, ant-associated fungi, deep-sea fungi and bryophilous fungi were also shown to belong to this group of ascomycetes. The delimitation of orders and families within this subclass has not previously been re-assessed using a broad phylogenetic study and the phylogenetic position of some taxa such as the lichenised family Celotheliaceae or the Chaetothyrialean bryophilous fungi is still unclear. In our study, we assemble new and published sequences from 132 taxa and reconstruct phylogenetic relationships using four markers (nuLSU, nuSSU, mtSSU and RPB1). Results highlight several shortfalls in the current classification of this subclass, mainly due to un-assigned paraphyletic taxa. The family Epibryaceae is therefore described to circumscribe a previously un-assigned lineage. Celotheliales ad int. is suggested for the lineage including the lichen genus Celothelium and various plant pathogens. The delimitation of the family Trichomeriaceae is also broadened to include the genus Knufia and some anamorphic taxa. As defined here, Chaetothyriomycetidae includes four orders (Celotheliales ad int., Chaetothyriales, Pyrenulales, and Verrucariales) and ten families (Adelococcaceae, Celotheliaceae, Chaetothyriaceae, Cyphellophoraceae, Epibryaceae fam. nov., Herpotrichiellaceae, Pyrenulaceae, Requienellaceae, Trichomeriaceae, and Verrucariaceae).
Journal Article
Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region
by
Sörgel, Matthias
,
Pires Florentino, Ana Paula
,
Barbosa, Cybelli G. G.
in
Aerosols
,
Atmospheric chemistry
,
Bryophytes
2021
Cryptogamic organisms such as bryophytes and lichens cover most surfaces within tropical forests, yet their impact on the emission of biogenic volatile organic compounds is unknown. These compounds can strongly influence atmospheric oxidant levels as well as secondary organic aerosol concentrations, and forest canopy leaves have been considered the dominant source of these emissions. Here we present cuvette flux measurements, made in the Amazon rainforest between 2016–2018, and show that common bryophytes emit large quantities of highly reactive sesquiterpenoids and that widespread lichens strongly uptake atmospheric oxidation products. A spatial upscaling approach revealed that cryptogamic organisms emit sesquiterpenoids in quantities comparable to current canopy attributed estimates, and take up atmospheric oxidation products at rates comparable to hydroxyl radical chemistry. We conclude that cryptogamic organisms play an important and hitherto overlooked role in atmospheric chemistry above and within tropical rainforests.
Journal Article
Lichen novelties from Corvo Island (Azores, Portugal)
by
Aptroot, André
,
Videira, Sandra
,
Rodrigues, António Félix
in
Archipelagoes
,
Azores
,
Biodiversity
2024
Corvo is a small and remote island in the western group of the Azores Archipelago, Portugal. The Island's lichen biodiversity was largely understudied, with only 17 species documented to date. This study reports 68 new records of lichen species on Corvo Island, representing an addition of two classes, eight orders, 18 families and 43 genera. It includes three new records for the Azores: Acrocordia conoidea (Fr.) Körb., Chrysothrix flavovirens Tønsberg and Glaucomaria rupicola (L.) P.F. Cannon (syn. Lecanora rupicola (L.) Zahlbr.). Additionally, it confirms the presence of three species previously reported in the Archipelago without specific locations: Lecidea phaeops Nyl., Peltigera canina (L.) Willd. and Pertusaria ficorum Zahlbr. This wealth of new lichen species records greatly enriches our understanding of biodiversity and sets a solid groundwork for upcoming ecological investigations in the Azores Archipelago.
Journal Article
Lichens from the Roosevelt River Area in the Brazilian Amazon
2023
Lichens were investigated in Brazil in a small area along the Roosevelt River in Amazonas; 25 species are first reports for Brazil, and 190 additional species are first records for Amazonas state. As many as 24 species are described that are new to science: Allographa lineatipruinosa, Allographa variopruinata, Arthonia xanthopycnidiata, Astrothelium aurantioseptemseptatum, Astrothelium bulbosum, Astrothelium coloratum, Astrothelium inspersonovemseptatum, Astrothelium insulare, Astrothelium laureroides, Astrothelium marjoleinae, Astrothelium meandratum, Astrothelium multireflexum, Astrothelium myopicum, Astrothelium parabathelium, Astrothelium stellare (also known from Mato Grosso state), Astrothelium suprainspersum, Astrothelium xanthocavatum, Ocellularia fuscolichexanthonica, Ocellularia lichexanthocavata, Pertusaria amazonica, Phaeographis xantholirellinata, Porina ramiisidiata, Pseudopyrenula connexa, and Sprucidea squamulosa.
Journal Article
A revisionary synopsis of the Trypetheliaceae (Ascomycota: Trypetheliales)
2016
A revisionary synopsis is presented for the family Trypetheliaceae, based on a separately published phylogenetic analysis of a large number of species, morpho-anatomical and chemical study of extensive material, and revision of numerous type specimens. A total of 418 species is formally accepted in this synopsis, distributed among 15 genera as follows: Aptrootia (3), Architrypethelium (7), Astrothelium (242), Bathelium (16), Bogoriella (29), Constrictolumina (9), Dictyomeridium (7), Distothelia (3), Marcelaria (3), Nigrovothelium (2), Novomicrothelia (1), Polymeridium (50), Pseudopyrenula (20), Trypethelium (16), and Viridothelium (10). All accepted genera, including new genera described separately in this issue, are keyed out and briefly described and discussed, and keys are provided for all accepted species within each genus. Entries with full synonymy and brief descriptions, and in part also discussions, are provided for all accepted species, except those newly described elsewhere in this issue, which are cross-referenced in the corresponding keys. The description of the newly defined genera takes into account phylogeny in combination with morpho-anatomical features with the result that they are mostly recognizable by a combination of thallus, ascoma and ascospore features. Most species previously assigned to the genera Astrothelium, Campylothelium, Cryptothelium, and Trypethelium, based on a schematic concept of ascoma morphology and ascospore septation, are now included in a single genus, Astrothelium, with highly variable ascoma morphology and ascospore septation but invariably with astrothelioid ascospores (at least when young), that is diamond-shaped lumina, and a well-developed, corticate, usually olive-green thallus that often covers the ascomata. While the genera Aptrootia (large, brown, muriform ascospores), Architrypethelium (large, mostly 3-septate ascospores), and Pseudopyrenula (ecorticate, white thalli and astrothelioid ascospores) are maintained, Trypethelium is redefined to include species with raised, pseudostromatic ascomata and multiseptate ascospores with thin septa. The sister group of Trypethelium is the genus Marcelaria, with brightly coloured pseudostromata and muriform ascospores. Bathelium is now limited to species with strongly raised, fully exposed pseudostromata and septate to muriform ascospores with thin septa. Several genera are recognized for more basal lineages with mostly ecorticate, white thalli and solitary, exposed ascomata previously assigned to Arthopyrenia, Mycomicrothelia and Polymeridium, viz. Bogoriella, Constrictolumina, Dictyomeridium, and Novomicrothelia. In addition, separate genera are accepted for the Trypethelium tropicum (Nigrovothelium) and T. virens (Viridothelium) groups. In addition, a refined species concept resulting from phylogenetic studies is employed which pays particular attention to morphological features of the thallus and ascomata. Of a total of 526 names checked, 107 remain synonyms of accepted names and a further eight are newly excluded from the family. Based on these redispositions, the following 146 new combinations are proposed, including reinstatement of numerous names previously subsumed into synonymy: Architrypethelium columbianum (Nyl.) Aptroot & Lücking comb. nov., A. grande (Kremp.) Aptroot & Lücking comb. nov., Astrothelium aeneum (Eschw.) Aptroot & Lücking comb. nov., A. alboverrucum (Makhija & Patw.) Aptroot & Lücking comb. nov., A. amazonum (R. C. Harris) Aptroot & Lücking comb. nov., A. ambiguum (Malme) Aptroot & Lücking comb. nov., A. andamanicum (Makhija & Patw.) Aptroot comb. nov., A. annulare (Spreng.) Aptroot & Lücking comb. nov., A. aurantiacum (Makhija & Patw) Aptroot & Lücking comb. nov., A. auratum (R. C. Harris) Aptroot & Lücking comb. nov., A. aureomaculatum (Vain.) Aptroot & Lücking comb. nov., A. basilicum (Kremp.) Aptroot & Lücking comb. nov., A. bicolor (Taylor) Aptroot & Lücking comb. nov., A. buckii (R. C. Harris) Aptroot & Lücking comb. nov., A. calosporum (Müll. Arg.) Aptroot & Lücking comb. nov., A. cartilagineum (Fée) Aptroot & Lücking comb. nov., A. cecidiogenum (Aptroot & Lücking) Aptroot & Lücking comb. nov., A. ceratinum (Fée) Aptroot & Lücking comb. nov., A. chapadense (Malme) Aptroot & Lücking comb. nov., A. chrysoglyphum (Vain.) Aptroot & Lücking comb. nov., A. chrysostomum (Vain.) Aptroot & Lücking comb. nov., A. cinereorosellum (Kremp.) Aptroot & Lücking comb. nov., A. cinereum (Müll. Arg.) Aptroot & Lücking comb. et stat. nov., A. confluens (Müll. Arg.) Aptroot & Lücking comb. nov., A. consimile (Müll. Arg.) Aptroot & Lücking comb. nov., A. deforme (Fée) Aptroot & Lücking comb. nov., A. defossum (Müll. Arg.) Aptroot & Lücking comb. nov., A. degenerans (Vain.) Aptroot & Lücking comb. nov., A. dissimilum (Makhija & Patw.) Aptroot & Lücking comb. nov., A. effusum (Aptroot & Sipman) Aptroot & Lücking comb. nov., A. endochryseum (Vain.) Aptroot & Lücking comb. nov., A. exostemmatis (Müll. Arg.) Aptroot & Lücking comb. nov., A. feei (C. F. W. Meissn.) Aptroot & Lücking comb. nov., A. ferrugineum (Müll. Arg.) Aptroot & Lücking comb. nov., A. galligenum (Aptroot) Aptroot & Lücking comb. nov., A. gigantosporum (Müll. Arg.) Aptroot & Lücking comb. nov., A. indicum (Upreti & Ajay Singh) Aptroot & Lücking comb. nov., A. infossum (Nyl.) Aptroot & Lücking comb. nov., A. infuscatulum (Müll. Arg.) Aptroot & Lücking comb. nov., A. irregulare (Müll. Arg.) Aptroot & Lücking comb. nov., A. keralense (Upreti & Ajay Singh) Aptroot & Lücking comb. nov., A. kunzei (Fée) Aptroot & Lücking comb. nov., A. leioplacum (Müll. Arg.) Aptroot & Lücking comb. nov., A. lugescens (Nyl.) Aptroot & Lücking comb. nov., A. luridum (Zahlbr.) Aptroot & Lücking comb. nov., A. macrocarpum (Fée) Aptroot & Lücking comb. nov., A. macrosporum (Makhija & Patw.) Aptroot & Lücking comb. nov., A. marcidum (Fée) Aptroot & Lücking comb. nov., A. megaleium (Kremp.) Aptroot & Lücking comb. nov., A. megalophthalmum (Müll. Arg.) Aptroot & Lücking comb. nov., A. megalostomum (Vain.) Aptroot & Lücking comb. nov., A. megaspermum (Mont.) Aptroot & Lücking comb. nov., A. meiophorum (Nyl.) Aptroot & Lücking comb. nov., A. meristosporoides (P. M. McCarthy & Vongshew.) Aptroot & Lücking comb. nov., A. meristosporum (Mont. & Bosch) Aptroot & Lücking comb. nov., A. neogalbineum (R. C. Harris) Aptroot & Lücking comb. nov., A. nigratum (Müll. Arg.) Aptroot & Lücking comb. et stat. nov., A. nigrorufum (Makhija & Patw.) Aptroot & Lücking comb. nov., A. nitidiusculum (Nyl.) Aptroot & Lücking comb. nov., A. octosporum (Vain.) Aptroot & Lücking comb. nov., A. oligocarpum (Müll. Arg.) Aptroot & Lücking comb. nov., A. olivaceofuscum (Zenker) Aptroot & Lücking comb. nov., A. papillosum (P. M. McCarthy) Aptroot & Lücking comb. nov., A. papulosum (Nyl.) Aptroot & Lücking comb. nov., A. peranceps (Kremp.) Aptroot & Lücking comb. nov., A. phaeothelium (Nyl.) Aptroot & Lücking comb. nov., A. phlyctaenua (Fée) Aptroot & Lücking comb. nov., A. porosum (Ach.) Aptroot & Lücking comb. nov., A. praetervisum (Müll. Arg.) Aptroot & Lücking comb. nov., A. pseudoplatystomum (Makhija & Patw.) Aptroot & Lücking comb. nov., A. pseudovariatum (Upreti & Ajay Singh) Aptroot & Lücking comb. nov., A. puiggarii (Müll. Arg.) Aptroot & Lücking comb. nov., A. pulcherrimum (Fée) Aptroot & Lücking comb. nov., A. pupula (Ach.) Aptroot & Lücking comb. nov., A. purpurascens (Müll. Arg.) Aptroot & Lücking comb. nov., A. pustulatum (Vain.) Aptroot & Lücking comb. nov., A. rufescens (Müll. Arg.) Aptroot & Lücking comb. et stat. nov., A. sanguinarium (Malme) Aptroot & Lücking comb. nov., A. santessonii (Letr.-Gal.) Aptroot & Lücking comb. nov., A. saxicola (Malme) Aptroot & Lücking comb. nov., A. scoria (Fée) Aptroot & Lücking comb. nov., A. scorizum (Müll. Arg.) Aptroot & Lücking comb. nov., A. sierraleonense (C. W. Dodge) Aptroot & Lücking comb. nov., A. sikkimense (Makhija & Patw.) Aptroot & Lücking comb. nov., A. spectabile (Aptroot & Ferraro) Aptroot & Lücking comb. nov., A. sphaerioides (Mont.) Aptroot & Lücking comb. nov., A. stramineum (Malme) Aptroot & Lücking comb. nov., A. straminicolor (Nyl.) Aptroot & Lücking comb. nov., A. subcatervarium (Malme) Aptroot & Lücking comb. nov., A. subdiscretum (Nyl.) Aptroot & Lücking comb. nov., A. subdisjunctum (Müll. Arg.) Aptroot & Lücking comb. nov., A. subdissocians (Nyl. ex Vain.) Aptroot & Lücking comb. et stat. nov., A. superbum (Fr.) Aptroot & Lücking comb. nov., A. tenue (Aptroot) Aptroot & Lücking comb. nov., A. thelotremoides (Nyl.) Aptroot & Lücking comb. nov., A. trypethelizans (Nyl.) Aptroot & Lücking comb. nov., A. tuberculosum (Vain.) Aptroot & Lücking comb. nov., A. ubianense (Vain.) Aptroot & Lücking comb. nov., A. variatum (Nyl.) Aptroot & Lücking comb. nov., A. vezdae (Makhija & Patw.) Aptroot & Lücking comb. nov., Bathelium austroafricanum (Zahlbr.) Aptroot & Lücking comb. nov., B. nigroporum (Makhija & Patw.) Aptroot & Lücking comb. nov., Bogoriella alata (Groenh. ex Aptroot) Aptroot & Lücking comb. nov., B. annonacea (Müll. Arg.) Aptroot & Lücking comb. nov., B. apposita (Nyl.) Aptroot & Lücking comb. nov., B. captiosa (Kremp.) Aptroot & Lücking comb. nov., B. collospora (Vain.) Aptroot & Lücking comb. nov., B. confluens (Müll. Arg.) Aptroot & Lücking comb. nov., B. conothelena (Nyl.) Aptroot & Lücking comb. nov., B. decipiens (Müll. Arg.) Aptroot & Lücking comb. nov., B. exigua (Müll. Arg.) Aptroot & Lücking comb. nov., B. fumosula (Zahlbr.) Aptroot & Lücking comb. nov., B. hemisphaerica (Müll. Arg.) Aptroot & Lücking comb. nov., B. lateralis (Sipman) Aptroot & Lücking comb. nov., B. leuckertii (D. Hawksw. & J. C. David) Aptroot & Lücking comb. nov., B. macrocarpa (Komposch, Aptroot & Hafellner) Aptroot & Lücking comb. nov., B. megaspora (Aptroot & M. Cáceres) Aptroot & Lücking comb. nov., B. miculiformis (Nyl. ex Müll. Arg.) Aptroot & Lücking comb. nov., B. minutula (Zahlbr.) Aptroot & Lücking comb. nov., B. modesta (Müll. Arg.) Aptroo
Journal Article