Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
79 result(s) for "Arad, Michael"
Sort by:
Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’
Background Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (DM2) are all linked to diabetic cardiomyopathy that lead to heart failure. Cardiomyopathy is initially characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and fibrosis, both of which are aggravated by angiotensin. Caloric restriction (CR) is cardioprotective in animal models of heart disease through its catabolic activity and activation of the expression of adaptive genes. We hypothesized that in the diabetic heart; this effect involves antioxidant defenses and is mediated by SIRT1 and the transcriptional coactivator PGC-1α (Peroxisome proliferator-activated receptor-γ coactivator). Methods Obese Leptin resistant ( db/db ) mice characterized by DM2 were treated with angiotensin II (AT) for 4 weeks to enhance the development of cardiomyopathy. Mice were concomitantly either on a CR diet or fed ad libitum. Cardiomyocytes were exposed to high levels of glucose and were treated with EX-527 (SIRT1 inhibitor). Cardiac structure and function, gene and protein expression and oxidative stress parameters were analyzed. Results AT treated db/db mice developed cardiomyopathy manifested by elevated levels of serum glucose, cholesterol and cardiac hypertrophy. Leukocyte infiltration, fibrosis and an increase in an inflammatory marker (TNFα) and natriuretic peptides (ANP, BNP) gene expression were also observed. Oxidative stress was manifested by low SOD and PGC-1α levels and an increase in ROS and MDA. DM2 resulted in ERK1/2 activation. CR attenuated all these deleterious perturbations and prevented the development of cardiomyopathy. ERK1/2 phosphorylation was reduced in CR mice (p = 0.008). Concomitantly CR prevented the reduction in SIRT activity and PGC-1α (p < 0.04). Inhibition of SIRT1 activity in cardiomyocytes led to a marked reduction in both SIRT1 and PGC-1α. ROS levels were significantly (p < 0.03) increased by glucose and SIRT1 inhibition. Conclusion In the current study we present evidence of the cardioprotective effects of CR operating through SIRT1 and PGC-1 α, thereby decreasing oxidative stress, fibrosis and inflammation. Our results suggest that increasing SIRT1 and PGC-1α levels offer new therapeutic approaches for the protection of the diabetic heart.
Differences in Mortality of New-Onset (De-Novo) Acute Heart Failure Versus Acute Decompensated Chronic Heart Failure
Minimal attention has been paid to understanding the implications of the chronicity of heart failure (HF) diagnosis on prognosis of hospitalized patients with acute HF (AHF). We aimed to assess the differences in outcomes between hospitalized patients with AHF that are new-onset (de-novo) AHF and acutely decompensated chronic HF (ADCHF). We analyzed data of 2,328 patients with AHF, who were enrolled in the HF survey in Israel. Patients were classified into de-novo AHF and ADCHF. A total of 721 (31%) patients were classified as de-novo AHF and 1,607 (69%) patients were classified as ADCHF. Patients with de-novo AHF were more likely to be younger, with fewer co-morbidities represented by lower Charlson index, and less likely to have past myocardial infarction as well as coronary revascularization. At 30 days mortality rates were similar in both groups (9% vs 8% in de-novo AHF and ADCHF, respectively). Survival analysis showed that at 1 and 10 years the all-cause mortality rates were significantly higher in patients with ADCHF (33% vs 22% and 90% vs 72%, 1 and 10 years, log-rank p < 0.001, respectively). Consistently, multivariable analysis showed that patients with ADCHF had an independently 58% and 48%, higher mortality risk at 1 and 10 years, respectively, (1-year hazard ratio = 1.58; 95% confidence interval 1.05 to 2.38, p = 0.03; 10-year hazard ratio = 1.48; 95% confidence interval = 1.23 to 2.77; p < 0.001). In conclusion, previous history of HF is an independent predictor of 1-year and 10-year mortality after hospitalization for AHF. Distinction between de-novo AHF and ADCHF may improve our understanding and risk stratification of patients with AHF.
Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system
Background Diabetic and obese patients are at higher risk of severe disease and cardiac injury in corona virus 2 (SARS-CoV-2) infections. Cellular entry of SARS-CoV-2 is mainly via the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in normal hearts. There is a disagreement regarding the effect of factors such as obesity and diabetes on ACE2 expression in the human heart and whether treatment with renin–angiotensin system inhibitors or anti-diabetic medications increases ACE2 expression and subsequently the susceptibility to infection. We designed this study to elucidate factors that control ACE2 expression in human serum, human heart biopsies, and mice. Methods Right atrial appendage biopsies were collected from 79 patients that underwent coronary artery bypass graft (CABG) surgery. We investigated the alteration in ACE2 mRNA and protein expression in heart tissue and serum. ACE2 expression was compared with clinical risk factors: diabetes, obesity and different anti-hypertensive or anti-diabetic therapies. WT or db/db mice were infused with Angiotensin II (ATII), treated with different anti-diabetic drugs (Metformin, GLP1A and SGLT2i) were also tested. Results ACE2 gene expression was increased in diabetic hearts compared to non-diabetic hearts and was positively correlated with glycosylated hemoglobin (HbA1c), body mass index (BMI), and activation of the renin angiotensin system (RAS), and negatively correlated with ejection fraction. ACE2 was not differentially expressed in patients who were on angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) prior to the operation. We found no correlation between plasma free ACE2 and cardiac tissue ACE2 expression. Transmembrane serine protease 2 ( TMPRSS2), metalloprotease ADAM10 and ADAM17 that facilitate viral- ACE2 complex entry and degradation were increased in diabetic hearts. ACE2 expression in mice was increased with ATII infusion and attenuated following anti-diabetic drugs treatment. Conclusion Patients with uncontrolled diabetes or obesity with RAS activation have higher ACE2 expressions therefore are at higher risk for severe infection. Since ACEi or ARBs show no effect on ACE2 expression in the heart further support their safety.
Functional abnormalities in iPSC‐derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia characterized by syncope and sudden death occurring during exercise or acute emotion. CPVT is caused by abnormal intracellular Ca2+ handling resulting from mutations in the RyR2 or CASQ2 genes. Because CASQ2 and RyR2 are involved in different aspects of the excitation‐contraction coupling process, we hypothesized that these mutations are associated with different functional and intracellular Ca²+ abnormalities. To test the hypothesis we generated induced Pluripotent Stem Cell‐derived cardiomyocytes (iPSC‐CM) from CPVT1 and CPVT2 patients carrying the RyR2R420Q and CASQ2D307H mutations, respectively, and investigated in CPVT1 and CPVT2 iPSC‐CM (compared to control): (i) The ultrastructural features; (ii) the effects of isoproterenol, caffeine and ryanodine on the [Ca2+]i transient characteristics. Our major findings were: (i) Ultrastructurally, CASQ2 and RyR2 mutated cardiomyocytes were less developed than control cardiomyocytes. (ii) While in control iPSC‐CM isoproterenol caused positive inotropic and lusitropic effects, in the mutated cardiomyocytes isoproterenol was either ineffective, caused arrhythmias, or markedly increased diastolic [Ca2+]i. Importantly, positive inotropic and lusitropic effects were not induced in mutated cardiomyocytes. (iii) The effects of caffeine and ryanodine in mutated cardiomyocytes differed from control cardiomyocytes. Our results show that iPSC‐CM are useful for investigating the similarities/differences in the pathophysiological consequences of RyR2 versus CASQ2 mutations underlying CPVT1 and CPVT2 syndromes.
Functional abnormalities in induced Pluripotent Stem Cell-derived cardiomyocytes generated from titin-mutated patients with dilated cardiomyopathy
Dilated cardiomyopathy (DCM), a myocardial disorder that can result in progressive heart failure and arrhythmias, is defined by ventricular chamber enlargement and dilatation, and systolic dysfunction. Despite extensive research, the pathological mechanisms of DCM are unclear mainly due to numerous mutations in different gene families resulting in the same outcome-decreased ventricular function. Titin (TTN)-a giant protein, expressed in cardiac and skeletal muscles, is an important part of the sarcomere, and thus TTN mutations are the most common cause of adult DCM. To decipher the basis for the cardiac pathology in titin-mutated patients, we investigated the hypothesis that induced Pluripotent Stem Cell (iPSC)-derived cardiomyocytes (iPSC-CM) generated from patients, recapitulate the disease phenotype. The hypothesis was tested by 3 Aims: (1) Investigate key features of the excitation-contraction-coupling machinery; (2) Investigate the responsiveness to positive inotropic interventions; (3) Investigate the proteome profile of the AuP cardiomyocytes using mass-spectrometry (MS). iPSC were generated from the patients' skin fibroblasts. The major findings were: (1) Sarcomeric organization analysis in mutated iPSC-CM showed defects in assembly and maintenance of sarcomeric structure. (2) Mutated iPSC-CM exhibited diminished inotropic and lusitropic responses to β-adrenergic stimulation with isoproterenol, increased [Ca2+]out and angiotensin-II. Additionally, mutated iPSC-CM displayed prolonged recovery in response to caffeine. These findings may result from defective or lack of interactions of the sarcomeric components with titin through its kinase domain which is absent in the mutated cells. These findings show that the mutated cardiomyocytes from DCM patients recapitulate abnormalities of the inherited cardiomyopathies, expressed as blunted inotropic response.
Electrophysiological abnormalities in induced pluripotent stem cell‐derived cardiomyocytes generated from Duchenne muscular dystrophy patients
Duchenne muscular dystrophy (DMD) is an X‐linked progressive muscle degenerative disease, caused by mutations in the dystrophin gene and resulting in death because of respiratory or cardiac failure. To investigate the cardiac cellular manifestation of DMD, we generated induced pluripotent stem cells (iPSCs) and iPSC‐derived cardiomyocytes (iPSC‐CMs) from two DMD patients: a male and female manifesting heterozygous carrier. Dystrophin mRNA and protein expression were analysed by qRT‐PCR, RNAseq, Western blot and immunofluorescence staining. For comprehensive electrophysiological analysis, current and voltage clamp were used to record transmembrane action potentials and ion currents, respectively. Microelectrode array was used to record extracellular electrograms. X‐inactive specific transcript (XIST) and dystrophin expression analyses revealed that female iPSCs underwent X chromosome reactivation (XCR) or erosion of X chromosome inactivation, which was maintained in female iPSC‐CMs displaying mixed X chromosome expression of wild type (WT) and mutated alleles. Both DMD female and male iPSC‐CMs presented low spontaneous firing rate, arrhythmias and prolonged action potential duration. DMD female iPSC‐CMs displayed increased beat rate variability (BRV). DMD male iPSC‐CMs manifested decreased If density, and DMD female and male iPSC‐CMs showed increased ICa,L density. Our findings demonstrate cellular mechanisms underlying electrophysiological abnormalities and cardiac arrhythmias in DMD.
Adipocyte-Specific Expression of PGC1α Promotes Adipocyte Browning and Alleviates Obesity-Induced Metabolic Dysfunction in an HO-1-Dependent Fashion
Recent studies suggest that PGC1-α plays a crucial role in mitochondrial and vascular function, yet the physiological significance of PGC1α and HO expression in adipose tissues in the context of obesity-linked vascular dysfunction remains unclear. We studied three groups of six-week-old C57BL/6J male mice: (1) mice fed a normal chow diet; (2) mice fed a high-fat diet (H.F.D.) for 28 weeks, and (3) mice fed a high-fat diet (H.F.D.) for 28 weeks, treated with adipose-specific overexpression of PGC-1α (transgenic-adipocyte-PGC-1α) at week 20, and continued on H.F.D. for weeks 20–28. R.N.A. arrays examined 88 genes involved in adipocyte proliferation and maturation. Blood pressure, tissue fibrosis, fasting glucose, and oxygen consumption were measured, as well as liver steatosis, and the expression levels of metabolic and mitochondrial markers. Obese mice exhibited a marked reduction of PGC1α and developed adipocyte hypertrophy, fibrosis, hepatic steatosis, and decreased mitochondrial respiration. Mice with adipose-specific overexpression of PGC1-α exhibited improvement in HO-1, mitochondrial biogenesis and respiration, with a decrease in fasting glucose, reduced blood pressure and fibrosis, and increased oxygen consumption. PGC-1α led to the upregulated expression of processes associated with the browning of fat tissue, including UCP1, FGF21, and pAMPK signaling, with a reduction in inflammatory adipokines, NOV/CCN3 expression, and TGFβ. These changes required HO-1 expression. The R.N.A. array analysis identified subgroups of genes positively correlated with contributions to the browning of adipose tissue, all dependent on HO-1. Our observations reveal a positive impact of adipose-PGC1-α on distal organ systems, with beneficial effects on HO-1 levels, reversing obesity-linked cardiometabolic disturbances.
Glycogen Storage Diseases Presenting as Hypertrophic Cardiomyopathy
Hypertrophic cardiomyopathy is usually caused by mutations in sarcomere proteins, but in some patients such mutations are not found. This study identified mutations in genes encoding enzymes involved in glycogen metabolism as causes of hypertrophic cardiomyopathy. Thus, glycogen storage diseases may sometimes present as hypertrophic cardiomyopathy, owing to accumulation of glycogen-filled vacuoles in myocytes. This study identified mutations in genes encoding enzymes involved in glycogen metabolism as causes of hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy, an autosomal dominant disorder associated with increased morbidity and premature mortality, is traditionally diagnosed on the basis of increased cardiac mass with histopathological findings of myocyte enlargement, myocyte disarray, and cardiac fibrosis. 1 – 3 However, given the availability of sophisticated noninvasive imaging techniques, an echocardiographic demonstration of unexplained left ventricular hypertrophy constitutes the current basis for a diagnosis of hypertrophic cardiomyopathy. 3 Echocardiography has shown that there is considerable diversity in the manifestations of hypertrophic cardiomyopathy, including variable age at onset, from early childhood to late adulthood, and severity of left ventricular hypertrophy. Left ventricular wall thickness in hypertrophic cardiomyopathy . . .
SNTA1 gene rescues ion channel function and is antiarrhythmic in cardiomyocytes derived from induced pluripotent stem cells from muscular dystrophy patients
Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients. To test whether dystrophin mutations lead to defective cardiac Na 1.5-Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays. Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (I ) and inward rectifier potassium (I ) currents. Membrane Na 1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, I and I densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers. We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the Na 1.5-Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a Na 1.5-Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias. Supported by National Institutes of Health R01 HL122352 grant; 'la Caixa' Banking Foundation (HR18-00304); Fundación La Marató TV3: 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.
SK4 K+ channels are therapeutic targets for the treatment of cardiac arrhythmias
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress‐provoked ventricular arrhythmia, which also manifests sinoatrial node (SAN) dysfunction. We recently showed that SK4 calcium‐activated potassium channels are important for automaticity of cardiomyocytes derived from human embryonic stem cells. Here SK4 channels were identified in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) from healthy and CPVT2 patients bearing a mutation in calsequestrin 2 (CASQ2‐D307H) and in SAN cells from WT and CASQ2‐D307H knock‐in (KI) mice. TRAM‐34, a selective blocker of SK4 channels, prominently reduced delayed afterdepolarizations and arrhythmic Ca 2+ transients observed following application of the β‐adrenergic agonist isoproterenol in CPVT2‐derived hiPSC‐CMs and in SAN cells from KI mice. Strikingly, in vivo ECG recording showed that intraperitoneal injection of the SK4 channel blockers, TRAM‐34 or clotrimazole, greatly reduced the arrhythmic features of CASQ2‐D307H KI and CASQ2 knockout mice at rest and following exercise. This work demonstrates the critical role of SK4 Ca 2+ ‐activated K + channels in adult pacemaker function, making them promising therapeutic targets for the treatment of cardiac ventricular arrhythmias such as CPVT. Synopsis SK4 Ca 2+ ‐activated K + channels are important for embryonic cardiac pacemaker function, and are now found to be crucial for adult sinoatrial node (SAN) pacing and successfully targeted for treatment of cardiac arrhythmias in mice. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited stress‐provoked ventricular arrhythmia, which also manifests sinoatrial node dysfunction. SK4 channels are identified in hiPSC cardiomyocytes (CMs) from healthy and CPVT2 patients and in SAN cells from WT and CASQ2‐D307H knock‐in (KI) mice. The SK4 channel blocker TRAM‐34 reduces the arrhythmic Ca 2+ transients observed in CPVT2‐derived hiPSC‐CMs and in SAN cells from KI mice. TRAM‐34 prominently decreased the ECG arrhythmic features of CASQ2‐D307H KI and CASQ2 knockout mice. SK4 channels are promising therapeutic targets for the treatment of cardiac arrhythmias such as CPVT. Graphical Abstract SK4 Ca 2+ ‐activated K + channels are important for embryonic cardiac pacemaker function, and are now found to be crucial for adult sinoatrial node (SAN) pacing and successfully targeted for treatment of cardiac arrhythmias in mice.