Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
87 result(s) for "Arduini, G"
Sort by:
An Urban Scheme for the ECMWF Integrated Forecasting System: Single‐Column and Global Offline Application
The societal benefits of numerical weather prediction (NWP) forecasts are most evident in populated areas. An urban representation within NWP models should provide improved forecast accuracy. Here, we present the preliminary implementation of an urban scheme within the Integrated Forecasting System (IFS) using a simplified single‐layer urban canopy model. The scheme makes assumptions of canyon geometry and considers fluxes from roads, walls, and roofs. Temperature observations were used to optimize single‐column model (SCM) parameters using the Gauss‐Newton method. Observation comparisons over six European cities, show a 2‐m temperature root‐mean‐squared error reduction from 1.85  to 1.75 K with the urban scheme. Optimized parameters were used globally at kilometric scale in a land surface model. A sensitivity experiment assuming a 100% urban world showed spatially averaged northern hemisphere 2‐m temperatures increased by 0.54 K (January) and 0.42 K (July) at night caused by changes in the albedo, emissivity, roughness, and thermal and hydrological properties. Global ∼1‐km resolution simulations using ancillary urban mapping information produce an urban heat island effect over major and minor conurbations. Only major conurbations were well represented at ∼9‐km resolution. Results from SCM simulations show a heightening of the planetary boundary layer over city sites, with the largest enhancements occurring at night in July (84 ± 48 m) caused by an increased sensible heat flux. These initial developments show the importance of a high‐resolution urban representation within NWP models. Improved parameterization and mapping will enable an online representation of energy, water, and trace gas fluxes over residential areas. Plain Language Summary Urban areas make up only a small fraction of the Earth's surface; however, they are home to over 50% of the world's population. In these areas a phenomenon known as the urban heat island effect causes increased temperatures due to human activities, an effect often missing in weather forecasts. Forecasts, generated using computer models, consider not only the atmosphere but also the role of the land surface on the weather above. Typically these models do not include an urban map, so they miss key urban processes. We introduced a representation of urban areas to the model of the European Center for Medium‐Range Weather Forecasts. We considered several ways in which the urban environment interacts with the weather, including through changes in heat storage and treatment of rainfall. We find these developments result in a more accurate model forecast over six European cities. The model accurately predicts the increased heating observed over cities at night and some of the observed changes in the atmosphere. Future work should continue to improve the urban representation in weather and air quality/greenhouse gas models by implementing an urban scheme in operational forecasts. Key Points An urban scheme has been introduced and optimized within the ECMWF IFS single‐column and surface‐only model Assuming an urban world, average nighttime 2‐m temperatures increased for January (0.54 K) and July (0.42 K) in a surface only simulation Using realistic urban cover for eight cities, PBL height in July increases by an average of 66 and 84 m for the day and night, respectively
Amorphous carbon coatings for the mitigation of electron cloud in the CERN Super Proton Synchrotron
Electron cloud buildup is a major limitation for high-energy particle accelerators such as the CERN Super Proton Synchrotron (SPS). Amorphous carbon thin films with low initial secondary electron yield (SEY≅1.0 ) have been applied as a mitigation material in the SPS vacuum chambers. This paper summarizes the experimental setups for electron cloud monitoring, coating procedures, and recent measurements performed with amorphous carbon coated vacuum chambers in the SPS. The electron cloud measured by dedicated monitors is completely suppressed for LHC-type beams. Even after more than one year’s exposure in the SPS with the machine in operation, the coating does not show any increase in the secondary electron yield. The study of coated vacuum chambers for the SPS dipole magnets is in progress; the correlation between electron cloud reduction and pressure rises is not yet fully understood. Some prototypes have already been installed in the accelerator and plans for the implementation of an optimized coating technique are under development.
An Urban Scheme for the ECMWF Integrated Forecasting System: Global Forecasts and Residential CO2 Emissions
The impact of urbanization on local weather patterns affects over half the global population. Global numerical weather prediction systems have reached a resolution at which urban conurbations can be spatially resolved, justifying their representation within land surface parameterizations with the aim of improving local predictions. Additionally, real‐time atmospheric monitoring of trace gas emissions can utilize weather variables relevant for urban areas. We investigated whether a simple single‐layer urban canopy scheme can be used within a global forecast model to jointly improve predictions of near‐surface weather variables and residential CO2 emissions. The scheme has been implemented in the Integrated Forecast System used operationally at the European Centre for Medium‐Range Weather Forecasts running at ∼9 km horizontal resolution. First, we selected a suitable urban land cover map (ECOCLIMAP‐SG) based on comparisons with regional data and land surface temperature MODIS retrievals. The urban scheme is verified by providing improved 2 m temperature (∼10%) and 10 m wind (∼17%) RMSE values for both summer and winter months around urban environments. The influence of the scheme was most noticeable at night. Additionally, we have implemented a simple temperature‐dependent residential emissions model to calculate real‐time CO2 heating emissions. These were validated against existing offline products, national reporting and by comparing atmospheric simulations with total column CO2 observations. The results show an improved temporal variability of emissions, which arise from synoptic scale temperature changes. Given the improved predictability from the urban scheme for both weather and emissions, it will be operationally implemented in an upcoming model cycle. Plain Language Summary In urban areas, temperatures are often elevated due to an effect known as the urban heat island. Although global weather forecasts, generated using computer models, typically include a representation of land surface processes, they often do not include the urban environment. We implemented a relatively simple urban scheme in the model of the European Centre for Medium‐Range Weather Forecasts and selected an appropriate urban cover map to use by comparing forecast land temperatures with satellite observations. We then compared this scheme with observations from urban sites around the globe and found improved temperature and wind forecasts. Furthermore, we used information from the urban scheme to generate a global forecast of residential CO2 emissions from heating. We find that by forecasting these emissions using the weather model we improve our prediction of atmospheric CO2 concentrations around urban environments. Key Points Several urban land cover maps were evaluated using satellite land‐surface temperature retrievals and independent data At ∼9 km horizontal resolution, an urban scheme improves modeled 2 m temperature and 10 m wind forecasts over urban areas of varying size An online residential heating CO2 emissions model (Modeling Emissions from Heating in Near‐real‐time Driven by the Integrated Forecasting System) using model variables improves forecasts of atmospheric concentrations
Impact of the 50 Hz harmonics on the beam evolution of the Large Hadron Collider
Harmonics of the mains frequency (50 Hz) have been systematically observed in the transverse beam spectrum of the Large Hadron Collider (LHC) since the start of its operation in the form of dipolar excitations. In the presence of strong nonlinearities such as beam-beam interactions, as many of these 50 Hz harmonics reside in the vicinity of the betatron tune they can increase the tune diffusion of the particles in the distribution, leading to proton losses and eventually to a significant reduction of the beam lifetime. The aim of this paper is to determine whether the 50 Hz harmonics have an impact on the beam performance of the LHC. A quantitative characterization of the 50 Hz ripple spectrum present in the operation of the accelerator, together with an understanding of its source is an essential ingredient to also evaluate the impact of the 50 Hz harmonics on the future upgrade of the LHC, the High Luminosity LHC (HL-LHC). To this end, simulations with the single-particle tracking code, sixtrack, are employed including a realistic 50 Hz ripple spectrum as extracted from experimental observations to quantify the impact of such effects in terms of tune diffusion, dynamic aperture, and beam lifetime. The methods and results of the tracking studies are reported and discussed in this paper.
Origin of the 50 Hz harmonics in the transverse beam spectrum of the Large Hadron Collider
Since the beginning of the Large Hadron Collider (LHC) commissioning, spectral components at harmonics of the mains frequency (50 Hz) have been observed in the transverse beam spectrum. This paper presents an overview of the most important observations, collected during the latest physics operation of the LHC in 2018, which clearly indicates that the harmonics are the result of a real beam excitation rather than an instrumental feature. Based on these findings, potential sources of the perturbation are discussed and a correlation with power supply ripple originating from the magnets’ power supplies is presented.
Operational scenario of first high luminosity LHC run
A new scenario for the first operational run of the High Luminoisty LHC (HL–LHC) era (Run 4) has recently been developed to accommodate a period of performance ramp-up to achieve an annual integrated luminosity close to the nominal HL–LHC design target. The operational scenario in terms of beam parameters and machine settings, as well as the different phases to reach optimal performance, are described here along with the impact of potential delays to key hardware components.
First electron-cloud studies at the Large Hadron Collider
During the beam commissioning of the Large Hadron Collider (LHC) [LHC Design Report No. CERN-2004-003-V-1, 2004 [http://cds.cern.ch/record/782076?ln=en]; O. Brüning, H. Burkhardt, and S. Myers, Prog. Part. Nucl. Phys. 67, 705 (2012)] with 150, 75, 50, and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities, or emittance growth, were observed. Methods have been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise as well as heat-load observations. These methods allow us to monitor the scrubbing process, i.e., the reduction of the secondary emission yield as a function of time, in order to decide on the most appropriate strategies for machine operation. To better understand the influence of electron clouds on the beam dynamics, simulations have been carried out to examine both the coherent and the incoherent effects on the beam. In this paper we present the methodology and first results for the scrubbing monitoring process at the LHC. We also review simulated instability thresholds and tune footprints for beams of different emittance, interacting with an electron cloud in field-free or dipole regions.
Study of inelastic nuclear interactions of 400 GeV/c protons in bent silicon crystals for beam steering purposes
Inelastic nuclear interaction probability of 400 GeV/c protons interacting with bent silicon crystals was investigated, in particular for both types of crystals installed at the CERN Large Hadron Collider for beam collimation purposes. In comparison to amorphous scattering interaction, in planar channeling this probability is ∼36% for the quasi-mosaic type (planes (111)), and ∼27% for the strip type (planes (110)). Moreover, the absolute inelastic nuclear interaction probability in the axial channeling orientation, along the ⟨110⟩ axis, was estimated for the first time, finding a value of 0.6% for a crystal 2 mm long along the beam direction, with a bending angle of 55 μrad. This value is more than two times lower with respect to the planar channeling orientation of the same crystal, and increases with the vertical angular misalignment. Finally, the correlation between the inelastic nuclear interaction probability in the planar channeling and the silicon crystal curvature is reported.
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land. Once completed, the period covered will span from 1950 to the present, with continuous updates to support land monitoring applications. ERA5-Land describes the evolution of the water and energy cycles over land in a consistent manner over the production period, which, among others, could be used to analyse trends and anomalies. This is achieved through global high-resolution numerical integrations of the ECMWF land surface model driven by the downscaled meteorological forcing from the ERA5 climate reanalysis, including an elevation correction for the thermodynamic near-surface state. ERA5-Land shares with ERA5 most of the parameterizations that guarantees the use of the state-of-the-art land surface modelling applied to numerical weather prediction (NWP) models. A main advantage of ERA5-Land compared to ERA5 and the older ERA-Interim is the horizontal resolution, which is enhanced globally to 9 km compared to 31 km (ERA5) or 80 km (ERA-Interim), whereas the temporal resolution is hourly as in ERA5. Evaluation against independent in situ observations and global model or satellite-based reference datasets shows the added value of ERA5-Land in the description of the hydrological cycle, in particular with enhanced soil moisture and lake description, and an overall better agreement of river discharge estimations with available observations. However, ERA5-Land snow depth fields present a mixed performance when compared to those of ERA5, depending on geographical location and altitude. The description of the energy cycle shows comparable results with ERA5. Nevertheless, ERA5-Land reduces the global averaged root mean square error of the skin temperature, taking as reference MODIS data, mainly due to the contribution of coastal points where spatial resolution is important. Since January 2020, the ERA5-Land period available has extended from January 1981 to the near present, with a 2- to 3-month delay with respect to real time. The segment prior to 1981 is in production, aiming for a release of the whole dataset in summer/autumn 2021. The high spatial and temporal resolution of ERA5-Land, its extended period, and the consistency of the fields produced makes it a valuable dataset to support hydrological studies, to initialize NWP and climate models, and to support diverse applications dealing with water resource, land, and environmental management. The full ERA5-Land hourly (Muñoz-Sabater, 2019a) and monthly (Muñoz-Sabater, 2019b) averaged datasets presented in this paper are available through the C3S Climate Data Store at https://doi.org/10.24381/cds.e2161bac and https://doi.org/10.24381/cds.68d2bb30, respectively.
Multiple scattering of channeled and non-channeled positively charged particles in bent monocrystalline silicon
We present the results of an experimental study of multiple scattering of positively charged high-energy particles in bent samples of monocrystalline silicon. This work confirms the recently discovered effect of a strong reduction in the rms multiple scattering angle of particles channeled in the silicon (111) plane. The effect is observed in the plane orthogonal to the bending plane. We show in detail the influence of angular constraints on the magnitude of the effect. Comparison of the multiple scattering process at different energies indicates a violation of the law of inverse proportionality of the rms angle of channeled particles with energy. By increasing the statistics, we have improved the results of multiple scattering measurements for particles moving, but not channeled, in silicon crystals.