Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Arnemo, Jon Martin"
Sort by:
Unleaded hunting: Are copper bullets and lead-based bullets equally effective for killing big game?
Semi-jacketed lead-cored or copper-based homogenous rifle bullets are commonly used for hunting big game. Ever since their introduction in the 1990’s, copper-based bullets have not been widely accepted by hunters due to limited supply, higher expense, and the perception that they exhibit inferior killing efficiency and correspondingly higher wounding rates. Here, we present data showing that animal flight distances for roe deer, red deer, brown bear, and moose dispatched with lead- or copper-based hunting bullets did not significantly differ from an animal welfare standardized animal flight distance based on body mass. Lead-cored bullets typical fragment on impact, whereas copper-based bullets retain more mass and expand more than their leaden counterparts. Our data demonstrate that the relative killing efficiency of lead and copper bullets is similar in terms of animal flight distance after fatal shots. Hunters that traditionally use lead bullets should consider switching to copper bullets to enhance human and environmental health.
Drivers of hibernation in the brown bear
Background: Hibernation has been a key area of research for several decades, essentially in small mammals in the laboratory, yet we know very little about what triggers or ends it in the wild. Do climatic factors, an internal biological clock, or physiological processes dominate? Using state-of-the-art tracking and monitoring technology on fourteen free-ranging brown bears over three winters, we recorded movement, heart rate (HR), heart rate variability (HRV), body temperature (Tb), physical activity, ambient temperature (TA), and snow depth to identify the drivers of the start and end of hibernation. We used behavioral change point analyses to estimate the start and end of hibernation and convergent cross mapping to identify the causal interactions between the ecological and physiological variables over time. Results: To our knowledge, we have built the first chronology of both ecological and physiological events from before the start to the end of hibernation in the field. Activity, HR, and Tb started to drop slowly several weeks before den entry. Bears entered the den when snow arrived and when ambient temperature reached 0 °C. HRV, taken as a proxy of sympathetic nervous system activity, dropped dramatically once the bear entered the den. This indirectly suggests that denning is tightly coupled to metabolic suppression. During arousal, the unexpected early rise in Tb (two months before den exit) was driven by TA, but was independent of HRV. The difference between Tb and TA decreased gradually suggesting that bears were not thermoconforming. HRV increased only three weeks before exit, indicating that late activation of the sympathetic nervous system likely finalized restoration of euthermic metabolism. Interestingly, it was not until TA reached the presumed lower critical temperature, likely indicating that the bears were seeking thermoneutrality, that they exited the den. Conclusions: We conclude that brown bear hibernation was initiated primarily by environmental cues, but terminated by physiological cues. Keywords: Body temperature, Denning ecology, Metabolic inhibition, Physiological ecology, Thermoregulation
Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears
Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD.
Retention and loss of PIT tags and surgically implanted devices in the Eurasian beaver
Background: Passive integrated transponder devices (PIT tags) are a valuable tool for individual identification of animals. Similarly, the surgical implantation of transmitters and bio-loggers can provide useful data on animal location, physiology and behavior. However, to avoid unnecessary recapture and related stress of study animals, PIT tags and bio-loggers should function reliably for long periods of time. Here, we evaluated the retention of PIT tags, and of very high frequency (VHF) transmitters and bio-loggers that were either implanted subcutaneously or into the peritoneal cavity of Eurasian beavers (Castor fiber). Results: Over a 21-year period, we implanted PIT tags in 456 individuals and failed to detect a PIT tag at recapture in 30 cases, consisting of 26 individuals (6% of individuals). In all instances, we were still able to identify the individual due to the presence of unique ear tag numbers and tail scars. Moreover, we implanted 6 VHFs, 36 body temperature loggers and 21 heart rate loggers in 28 individuals, and experienced frequent loss of temperature loggers (at least 6 of 23 recaptured beavers) and heart rate loggers (10 of 18 recaptured beavers). No VHFs were lost in 2 recaptured beavers. Conclusions: Possible causes for PIT tag loss (or non-detection) were incorrect implantation, migration of the tag within the body, a foreign body reaction leading to ejection, or malfunctioning of the tag. We speculate that logger loss was related to a foreign body reaction, and that loggers were either rejected through the incision wound or, in the case of temperature loggers, possibly adhered and encapsulated to intestines, and then engulfed by the gastro-intestinal tract and ejected. We discuss animal welfare implications and give recommendations for future studies implanting bio-loggers into wildlife.
Case report: Subclinical verminous pneumonia and high ambient temperatures had severe impact on the anesthesia of semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) with medetomidine-ketamine
Semidomesticated Eurasian tundra reindeer (Rangifer tarandus tarandus, n = 21) were scheduled twice for chemical immobilization with medetomidine–ketamine as part of a scientific experiment in June 2014. During the first round of immobilizations, seven animals developed severe respiratory depression (RD). Three individuals died, and 4 recovered. The ambient temperature during the 2 days of immobilization (June 3 and 4) was high (mean 13.9–17.6°C) compared to the normal mean temperature for these 2 days (7–8°C) based on statistical records. During the second round of immobilizations, using the same anesthetic protocol for the remaining animals as in the first round but conducted under cooler conditions (mean 6.6°C for the period June 9–18), no signs of RD were observed. Clinical and pathological investigations indicated that the animals suffered from circulatory changes possibly caused by high ambient temperatures and granulomatous interstitial pneumonia due to Elaphostrongylus rangiferi larvae. These conditions, together with the cardiovascular effects of medetomidine, were likely causes of RD and the fatal outcome. We conclude that chemical immobilization of reindeer with medetomidine–ketamine should be avoided in May–June due to the potential risk when animals partly in winter coats encounter rising ambient temperatures and usually have parasites developing in their airways.
Haematological and biochemical reference intervals for free-ranging brown bears (Ursus arctos) in Sweden
Background Establishment of haematological and biochemical reference intervals is important to assess health of animals on individual and population level. Reference intervals for 13 haematological and 34 biochemical variables were established based on 88 apparently healthy free-ranging brown bears (39 males and 49 females) in Sweden. The animals were chemically immobilised by darting from a helicopter with a combination of medetomidine, tiletamine and zolazepam in April and May 2006–2012 in the county of Dalarna, Sweden. Venous blood samples were collected during anaesthesia for radio collaring and marking for ecological studies. For each of the variables, the reference interval was described based on the 95% confidence interval, and differences due to host characteristics sex and age were included if detected. To our knowledge, this is the first report of reference intervals for free-ranging brown bears in Sweden. Results The following variables were not affected by host characteristics: red blood cell, white blood cell, monocyte and platelet count, alanine transaminase, amylase, bilirubin, free fatty acids, glucose, calcium, chloride, potassium, and cortisol. Age differences were seen for the majority of the haematological variables, whereas sex influenced only mean corpuscular haemoglobin concentration, aspartate aminotransferase, lipase, lactate dehydrogenase, β-globulin, bile acids, triglycerides and sodium. Conclusions The biochemical and haematological reference intervals provided and the differences due to host factors age and gender can be useful for evaluation of health status in free-ranging European brown bears.
Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells
Muscle atrophy is one of the main characteristics of human ageing and physical inactivity, with resulting adverse health outcomes. To date, there are still no efficient therapeutic strategies for its prevention and/or treatment. However, during hibernation, bears exhibit a unique ability for preserving muscle in conditions where muscle atrophy would be expected in humans. Therefore, our objective was to determine whether there are components of bear serum which can control protein balance in human muscles. In this study, we exposed cultured human differentiated muscle cells to bear serum collected during winter and summer periods, and measured the impact on cell protein content and turnover. In addition, we explored the signalling pathways that control rates of protein synthesis and degradation. We show that the protein turnover of human myotubes is reduced when incubated with winter bear serum, with a dramatic inhibition of proteolysis involving both proteasomal and lysosomal systems, and resulting in an increase in muscle cell protein content. By modulating intracellular signalling pathways and inducing a protein sparing phenotype in human muscle cells, winter bear serum therefore holds potential for developing new tools to fight human muscle atrophy and related metabolic disorders.
Movement and heart rate in the Scandinavian brown bear (Ursus arctos)
Background: Understanding animal movement facilitates better management and conservation. The link between movement and physiology holds clues to the basic drivers of animal behaviours. In bears, heart rate increases with the metabolic rate during the active phase. Their movement and heart rate change at seasonal and daily scales, and can also depend on environmental factors. Their behaviour is, therefore, flexible in activity patterns with high individual variations. The aim of this study was to establish the relationship between heart rate and distance travelled, and test whether this relationship was influenced by environmental (e.g., time of year and time of day) and biological (e.g., reproductive status, sex, body mass and age of the bears) factors. We analysed data of distance travelled and heart rate of 15 GPS-collared brown bears, both males and females, equipped with cardiac loggers in the south of Sweden in 2014–2017. Results: Heart rate increased with distances travelled exceeding 50 m in an hour, but this correlation depended on the day-of-year with higher heart rate in August than in May. Bears accompanied by cubs had lower heart rate than solitary bears especially in May. When movement was minimum (< 50 m in an hour), heart rate was not related to distance travelled and was very variable, regardless of the months. Conclusions: Our findings suggest that heart rate increases with long distances travelled, but varies with day-of-year and reproductive status, depending on the metabolic rate. Studying the change in heart rate in bears can help to evaluate their seasonal rhythms and how different factors affect them. This study illustrates the usefulness of combined bio-logging proxies, i.e., movement and heart rates in our case, in animal ecology.