Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Arunagiri, Anoop"
Sort by:
PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones
The reticulon-3 (RTN3)-driven targeting complex promotes clearance of misfolded prohormones from the endoplasmic reticulum (ER) for lysosomal destruction by ER-phagy. Because RTN3 resides in the cytosolic leaflet of the ER bilayer, the mechanism of selecting misfolded prohormones as ER-phagy cargo on the luminal side of the ER membrane remains unknown. Here we identify the ER transmembrane protein PGRMC1 as an RTN3-binding partner. Via its luminal domain, PGRMC1 captures misfolded prohormones, targeting them for RTN3-dependent ER-phagy. PGRMC1 selects cargos that are smaller than the large size of other reported ER-phagy substrates. Cargos for PGRMC1 include mutant proinsulins that block secretion of wildtype proinsulin through dominant-negative interactions within the ER, causing insulin-deficiency. Chemical perturbation of PGRMC1 partially restores WT insulin storage by preventing ER-phagic degradation of WT and mutant proinsulin. Thus, PGRMC1 acts as a size-selective cargo receptor during RTN3-dependent ER-phagy, and is a potential therapeutic target for diabetes. Degradation of misfolded proteins from the endoplasmic reticulum (ER) is important for maintaining proper cellular protein homeostasis. Here, the authors discovered that the ER membrane protein PGRMC1 binds to misfolded prohormones for recruitment into the ER-phagy degradative pathway.
The B22 Dilemma: Structural Basis for Conformational Differences in Proinsulin B-Chain Arg22 Mutants
Proinsulin has three distinct regions: the well-folded A- and B-chains and the dynamic disordered C-peptide. The highly conserved B-chain is a hotspot for diabetes-associated mutations, including the severe loss-of-function R(B22)Q mutation linked to childhood-onset diabetes. Here, we explore R(B22)’s role in proinsulin stability using AlphaFold-predicted structures and metadynamics simulations to achieve enhanced sampling of the free energy landscape. Our results show that R(B22) stabilizes proinsulin by interacting with N86. Substituting R(B22) with E or Q disrupts this interaction, increasing conformational flexibility. The R(B22)Q variant exhibits a flattened free energy landscape, favoring unfolded states. Additional substitutions, including Gly, Ala, Lys, Tyr, Asp, and Phe, destabilize proinsulin to varying extents by weakening hydrogen bonding. Disrupting the R(B22)–N86 interaction broadly reduces inter-chain contacts, raising the risk of aggregation-prone states. Given the link between R(B22) mutations and diabetes, our study provides crucial molecular insights into proinsulin instability. These findings highlight the role of key inter-domain (A-Chain–B-chain, B-Chain–C-peptide, and A-Chain–C-peptide) interactions in maintaining protein structures and the implications this has for understanding disease-associated proinsulin variants.
Proinsulin misfolding is an early event in the progression to type 2 diabetes
Biosynthesis of insulin – critical to metabolic homeostasis – begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes. Our body fine-tunes the amount of sugar in our blood thanks to specialized ‘beta cells’ in the pancreas, which can release a hormone called insulin. To produce insulin, the beta cells first need to build an early version of the molecule – known as proinsulin – inside a cellular compartment called the endoplasmic reticulum. This process involves the formation of internal staples that keep the molecule of proinsulin folded correctly. Individuals developing type 2 diabetes have spikes of sugar in their blood, and so their bodies often respond by trying to make large amounts of insulin. After a while, the beta cells can fail to keep up, which brings on the full-blown disease. However, scientists have discovered that early in type 2 diabetes, the endoplasmic reticulum of beta cells can already show signs of stress; yet, the exact causes of this early damage are still unknown. To investigate this, Arunagiri et al. looked into whether proinsulin folds correctly during the earliest stages of type 2 diabetes. Biochemical experiments showed that even healthy beta cells contained some misfolded proinsulin molecules, where the molecular staples that should fold proinsulin internally were instead abnormally linking proinsulin molecules together. Further work revealed that the misfolded proinsulin was accumulating inside the endoplasmic reticulum. Finally, obese mice that were in the earliest stages of type 2 diabetes had the highest levels of abnormal proinsulin in their beta cells. Overall, the work by Arunagiri et al. suggests that large amounts of proinsulin molecules stapling themselves to each other in the endoplasmic reticulum of beta cells could be an early hallmark of the disease, and could make it get worse. A separate study by Jang et al. also shows that a protein that limits the misfolding of proinsulin is key to maintain successful insulin production in animals eating a Western-style, high fat diet. Hundreds of millions of people around the world have type 2 diabetes, and this number is rising quickly. Detecting and then fixing early problems associated with the condition may help to stop the disease in its track.
Normal and defective pathways in biogenesis and maintenance of the insulin storage pool
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins -Cre , Pitpna flox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D. Type 2 diabetes (T2D) is characterized by pancreatic beta-cell failure. Here, the authors show restoration of Phosphatidylinositol transfer protein alpha (PITPNA), a mediator of PtdIns-4-phosphate synthesis in the trans-Golgi network, in human T2D islets reverses impaired insulin granule maturation, exocytosis, and ER stress.
Transgenic overexpression of microRNA-30d in pancreatic beta-cells progressively regulates beta-cell function and identity
Abnormal microRNA functions are closely associated with pancreatic β-cell loss and dysfunction in type 2 diabetes. Dysregulation of miR-30d has been reported in the individuals with diabetes. To study how miR-30d affects pancreatic β-cell functions, we generated two transgenic mouse lines that specifically overexpressed miR-30d in β-cells at distinct low and high levels. Transgenic overexpressed miR-30d systemically affected β-cell function. Elevated miR-30d at low-level (TgL, 2-fold) had mild effects on signaling pathways and displayed no significant changes to metabolic homeostasis. In contrast, transgenic mice with high-level of miR-30d expression (TgH, 12-fold) exhibited significant diet-induced hyperglycemia and β-cell dysfunction. In addition, loss of β-cell identity was invariably accompanied with increased insulin/glucagon-double positive bihormonal cells and excess plasma glucagon levels. The transcriptomic analysis revealed that miR-30d overexpression inhibited β-cell-enriched gene expression and induced α-cell-enriched gene expression. These findings implicate that an appropriate miR-30d level is essential in maintaining normal β-cell identity and function.
Distinct states of proinsulin misfolding in MIDY
A precondition for efficient proinsulin export from the endoplasmic reticulum (ER) is that proinsulin meets ER quality control folding requirements, including formation of the Cys(B19)–Cys(A20) “interchain” disulfide bond, facilitating formation of the Cys(B7)–Cys(A7) bridge. The third proinsulin disulfide, Cys(A6)–Cys(A11), is not required for anterograde trafficking, i.e., a “lose-A6/A11” mutant [Cys(A6), Cys(A11) both converted to Ser] is well secreted. Nevertheless, an unpaired Cys(A11) can participate in disulfide mispairings, causing ER retention of proinsulin. Among the many missense mutations causing the syndrome of Mutant INS gene-induced Diabetes of Youth (MIDY), all seem to exhibit perturbed proinsulin disulfide bond formation. Here, we have examined a series of seven MIDY mutants [including G(B8)V, Y(B26)C, L(A16)P, H(B5)D, V(B18)A, R(Cpep + 2)C, E(A4)K], six of which are essentially completely blocked in export from the ER in pancreatic β-cells. Three of these mutants, however, must disrupt the Cys(A6)–Cys(A11) pairing to expose a critical unpaired cysteine thiol perturbation of proinsulin folding and ER export, because when introduced into the proinsulin lose-A6/A11 background, these mutants exhibit native-like disulfide bonding and improved trafficking. This maneuver also ameliorates dominant-negative blockade of export of co-expressed wild-type proinsulin. A growing molecular understanding of proinsulin misfolding may permit allele-specific pharmacological targeting for some MIDY mutants.
Limiting ER-associated degradation capacity triggers acute and chronic effects on insulin biosynthesis
In pancreatic β cells, misfolded proinsulin is a substrate for ER-associated protein degradation (ERAD) via HRD1/SEL1L. Alternately, β cell HRD1 activity is reported to improve, or impair, insulin biogenesis. Further, while β cell SEL1L deficiency causes HRD1 hypofunction and diminishes islet insulin content, reports conflict as to whether β cell ERAD deficiency increases or decreases proinsulin levels. Here, we examined β cell-specific Hrd1-KO mice (chronic deficiency) and rodent (and human islet) β cells treated acutely with HRD1 inhibitor. β-Hrd1-KO mice developed diabetes with decreased islet proinsulin, yet a relative increase of misfolded proinsulin redistributed to the ER. They also showed upregulated biochemical markers of β cell ER stress and autophagy, electron microscopy evidence of ER enlargement and decreased insulin granule content, and increased glucagon-positive islet cells. Misfolded proinsulin was also increased in islets treated with inhibitors of lysosomal degradation. Preceding any loss of total proinsulin, acute HRD1 inhibition triggered increased nonnative proinsulin, increased phospho-eIF2α with inhibited proinsulin synthesis, and increased LC3b-II (the abundance of which requires expression of ΣR1). We posit a subset of proinsulin molecules undergo HRD1-mediated disposal. When HRD1 is unavailable, misfolded proinsulin accumulates, accompanied by increased phospho-eIF2α that limits further proinsulin synthesis, plus ΣR1-dependent autophagy activation, ultimately lowering steady-state β cell proinsulin (and insulin) levels and triggering diabetes.
Amyloid formation of growth hormone in presence of zinc: Relevance to its storage in secretory granules
Amyloids are cross-β-sheet fibrillar aggregates, associated with various human diseases and native functions such as protein/peptide hormone storage inside secretory granules of neuroendocrine cells. In the current study, using amyloid detecting agents, we show that growth hormone (GH) could be stored as amyloid in the pituitary of rat. Moreover, to demonstrate the formation of GH amyloid in vitro , we studied various conditions (solvents, glycosaminoglycans, salts and metal ions) and found that in presence of zinc metal ions (Zn(II)), GH formed short curvy fibrils. The amyloidogenic nature of these fibrils was examined by Thioflavin T binding, Congo Red binding, transmission electron microscopy and X-ray diffraction. Our biophysical studies also suggest that Zn(II) initiates the early oligomerization of GH that eventually facilitates the fibrillation process. Furthermore, using immunofluorescence study of pituitary tissue, we show that GH in pituitary significantly co-localizes with Zn(II), suggesting the probable role of zinc in GH aggregation within secretory granules. We also found that GH amyloid formed in vitro is capable of releasing monomers. The study will help to understand the possible mechanism of GH storage, its regulation and monomer release from the somatotrophs of anterior pituitary.