Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Asryan, G."
Sort by:
Improving the energy system of a poultry enterprise
Energy saving at any enterprise is an urgent problem associated with high expences for energy carriers and a constant increase in their cost. The aim of the study is to modernize the energy system of one of the poultry factories in the Vologda Oblast in Russia in order to reduce electricity costs. Modeling methods for a comprehensive assessment of possible options were usedas well as an experiment that showed that the most effective way to reduce electricity costs was to upgrade the energy system based on \"small generation\" using traditional fuels. The modernization allowed the poultry farm to produce up to a third of its own electricity with the help of mini-CHPs annually, and to keep the cost of the generated kW⋅h three times lower than the network. The experience of modernization of the energy system of a poultry farm in Russia has confirmed the possibility of joint use of PTL-6(10) and a steam turbine generator at the enterprise. The paper will be useful to researchers and energy specialists who are looking for ways to save energy on a poultry farms.
Momentum sharing in imbalanced Fermi systems
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin–state, ultracold atomic gas systems.
Probing the core of the strong nuclear interaction
The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances 1 – 5 but not at shorter distances. This limits our ability to describe high-density nuclear matter such as that in the cores of neutron stars 6 . Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations 7 – 9 , accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta between the pair above 400 megaelectronvolts per c ( c , speed of light in vacuum). As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor force to a predominantly spin-independent scalar force. These results demonstrate the usefulness of using such measurements to study the nuclear interaction at short distances and also support the use of point-like nucleon models with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of the nucleus. High-energy electron scattering that can isolate pairs of nucleons in high-momentum configurations reveals a transition to spin-independent scalar forces at small separation distances, supporting the use of point-like nucleon models to describe dense nuclear systems.
Nuclear physics. Momentum sharing in imbalanced Fermi systems
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
Neutron background measurements with a hybrid neutron detector at the Kuo-Sheng Reactor Neutrino Laboratory
We report in situ neutron background measurements at the Kuo-Sheng Reactor Neutrino Laboratory (KSNL) by a hybrid neutron detector (HND) with a data size of 33.8 days under identical shielding configurations as during the neutrino physics data taking. The HND consists of BC-501A liquid and BC-702 phosphor powder scintillation neutron detectors, which is sensitive to both fast and thermal neutrons, respectively. Neutron-induced events for the two channels are identified and differentiated by pulse shape analysis, such that background of both are simultaneously measured. The fast neutron fluxes are derived by an iterative unfolding algorithm. Neutron induced background in the germanium detector under the same fluxes, both due to cosmic-rays and ambient radioactivity, are derived and compared with the measurements. The results are valuable to background understanding of the neutrino data at the KSNL. In particular, neutron-induced background events due to ambient radioactivity as well as from reactor operation are negligible compared to intrinsic cosmogenic activity and ambient \\(\\gamma\\)-activity. The detector concept and analysis procedures are applicable to neutron background characterization in similar rare-event experiments.
Design and Performance of a Hybrid Fast and Thermal Neutron Detector
We report the performance and characterization of a custom-built hybrid detector consisting of BC501A liquid scintillator for fast neutrons and BC702 scintillator for thermal neutrons. The calibration and the resolution of the BC501A liquid scintillator detector are performed. The event identification via Pulse Shape Discrimination (PSD) technique is developed in order to distinguish gamma, fast and thermal neutrons. Monte Carlo simulation packages are developed in GEANT4 to obtain actual neutron energy spectrum from the measured recoil spectrum. The developed methods are tested by reconstruction of 241AmBe(\\alpha, n) neutron spectrum.
Characterization and Performance of Germanium Detectors with sub-keV Sensitivities for Neutrino and Dark Matter Experiments
Germanium ionization detectors with sensitivities as low as 100 eVee (electron-equivalent energy) open new windows for studies on neutrino and dark matter physics. The relevant physics subjects are summarized. The detectors have to measure physics signals whose amplitude is comparable to that of pedestal electronic noise. To fully exploit this new detector technique, various experimental issues including quenching factors, energy reconstruction and calibration, signal triggering and selection as well as evaluation of their associated efficiencies have to be attended. The efforts and results of a research program to address these challenges are presented.
Measurement of Target and Double-spin Asymmetries for the \\(\\vec e\\vec p\\to e\\pi^+ (n)\\) Reaction in the Nucleon Resonance Region at Low \\(Q^2\\)
We report measurements of target- and double-spin asymmetries for the exclusive channel \\(\\vec e\\vec p\\to e\\pi^+ (n)\\) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH\\(_3\\) target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low \\(Q^2\\) range from \\(0.0065\\) to \\(0.35\\) (GeV\\(/c\\))\\(^2\\). The \\(Q^2\\) access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as \\(6^\\circ\\). These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.
Measurements of Cross Sections and Charged Pion Spectra in Proton-Carbon Interactions at 31 GeV/c
Interaction cross sections and charged pion spectra in p+C interactions at 31 GeV/c were measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS. These data are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. A set of data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of a nuclear interaction length was used for the analysis. The measured p+C inelastic and production cross sections are 257.2 +- 1.9 +- 8.9 mb and 229.3 +- 1.9 +- 9.0 mb, respectively. Inclusive production cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in 10 intervals of the laboratory polar angle covering the range from 0 up to 420 mrad. The spectra are compared with predictions of several hadron production models.
Nuclear Transparency in 90 Degree c.m. Quasielastic A(p,2p) Reactions
We summarize the results of two experimental programs at the Alternating Gradient Synchrotron of BNL to measure the nuclear transparency of nuclei measured in the A(p,2p) quasielastic scattering process near 90 Deg .in the pp center of mass. The incident momenta varied from 5.9 to 14.4 GeV/c, corresponding to 4.8 < Q^2 < 12.7 (GeV/c)^2. First, we describe the measurements with the newer experiment, E850, which had more complete kinematic definition of quasielastic events. In E850 the angular dependence of the nuclear transparency near 90 Deg. c.m., and the nuclear transparency for deuterons was studied. Second, we review the techniques used in an earlier experiment, E834, and show that the two experiments are consistent for the Carbon data. E834 also determines the nuclear transparencies for Li, Al, Cu, and Pb nuclei as well as for C. We find for both E850 and E834 that the A(p,2p) nuclear transparency, unlike that for A(e,e'p) nuclear transparency, is incompatible with a constant value versus energy as predicted by Glauber calculations. The A(p,2p) nuclear transparency for C and Al increases by a factor of two between 5.9 and 9.5 GeV/c incident proton momentum. At its peak the A(p,2p) nuclear transparency is about 80% of the constant A(e,e'p) nuclear transparency. Then the nuclear transparency falls back to the Glauber level again. This oscillating behavior is generally interpreted as an interplay between two components of the pN scattering amplitude; one short ranged and perturbative, and the other long ranged and strongly absorbed in the nuclear medium. We suggest a number of experiments for further studies of nuclear transparency effects.