Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
166 result(s) for "Assunção, Ricardo"
Sort by:
The electron–proton bottleneck of photosynthetic oxygen evolution
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today’s oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S 4 state—which was postulated half a century ago 1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O 2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O 2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S 4 state as the oxygen-radical state; its formation is followed by fast O–O bonding and O 2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O 2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems. Microsecond infrared spectroscopy together with quantum chemistry reveal the rate-determining proton and electron movements and identify an oxygen-radical state of the manganese cluster as the S4 state.
Alignment Modulates Ancestral Sequence Reconstruction Accuracy
Accurate reconstruction of ancestral states is a critical evolutionary analysis when studying ancient proteins and comparing biochemical properties between parental or extinct species and their extant relatives. It relies on multiple sequence alignment (MSA) which may introduce biases, and it remains unknown how MSA methodological approaches impact ancestral sequence reconstruction (ASR). Here, we investigate how MSA methodology modulates ASR using a simulation study of various evolutionary scenarios. We evaluate the accuracy of ancestral protein sequence reconstruction for simulated data and compare reconstruction outcomes using different alignment methods. Our results reveal biases introduced not only by aligner algorithms and assumptions, but also tree topology and the rate of insertions and deletions. Under many conditions we find no substantial differences between the MSAs. However, increasing the difficulty for the aligners can significantly impact ASR. The MAFFT consistency aligners and PRANK variants exhibit the best performance, whereas FSA displays limited performance. We also discover a bias towards reconstructed sequences longer than the true ancestors, deriving from a preference for inferring insertions, in almost all MSA methodological approaches. In addition, we find measures of MSA quality generally correlate highly with reconstruction accuracy. Thus, we show MSA methodological differences can affect the quality of reconstructions and propose MSA methods should be selected with care to accurately determine ancestral states with confidence.
Light-driven formation of manganese oxide by today’s photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis
Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation. Photosynthetic formation of manganese (Mn) oxides from dissolved Mn ions was proposed to occur in ancestral photosystems before oxygenic photosynthesis evolved. Here, the authors provide evidence for this hypothesis by showing that photosystem II devoid of the Mn cluster oxidises Mn ions leading to formation of Mn-oxide nanoparticles.
INFOGEST static in vitro simulation of gastrointestinal food digestion
Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.Brodkorb et al. provide a standardized static in vitro protocol for the study of gastrointestinal food digestion and the analysis of digestion products.
Impact of energy limitations on function and resilience in long-wavelength Photosystem II
Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis , a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via P D1 + Phe - repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and Q A and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties. Algae, plants and cyanobacteria perform a process called photosynthesis, in which carbon dioxide and water are converted into oxygen and energy-rich carbon compounds. The first step of this process involves an enzyme called photosystem II, which uses light energy to extract electrons from water to help capture the carbon dioxide. If the photosystem absorbs too much light, compounds known as reactive oxygen species are produced in quantities that damage the photosystem and kill the cell. To ensure that the photosystem works efficiently and to protect it from damage, about half of the energy from the absorbed light is dissipated as heat, while the rest of the energy is stored in the products of photosynthesis. The standard form of photosystem II uses the energy of visible light, but some cyanobacteria contain different types of photosystem II, which do the same chemical reactions using lower energy far-red light. One type of far-red photosystem II is found in Acaryochloris marina , a cyanobacterium living in stable levels of far-red light, shaded from visible light. The other type is found in a cyanobacterium called Chroococcidiopsis thermalis, which can switch between using its far-red photosystem II when shaded from visible light and using its standard photosystem II when exposed to it. Being able to work with less energy, the two types of far-red photosystem II appear to be more efficient than the standard one, but it has been unclear if there were any downsides to this trait. Viola et al. compared the standard photosystem II with the far-red photosystem II types from C. thermalis and A. marina by measuring the efficiency of these enzymes, the quantity of reactive oxygen species produced, and the resulting light-induced damage. The experiments revealed that the far-red photosystem II of A. marina is highly efficient but produces elevated levels of reactive oxygen species if exposed to high light conditions. On the other hand, the far-red photosystem II of C. thermalis is less efficient in collecting and using far-red light, but is more robust, producing fewer reactive oxygen species. Despite these tradeoffs, engineering crop plants or algae that could use far-red photosynthesis may help boost food and biomass production. A better understanding of the trade-offs between efficiency and resilience in the two types of far-red photosystem II could determine which features would be beneficial, and under what conditions. This work also improves our knowledge of how the standard photosystem II balances light absorption and damage limitation to work efficiently in a variable environment.
Mortality burden of cardiovascular disease attributable to ambient PM2.5 exposure in Portugal, 2011 to 2021
Background Exposure to high levels of environmental air pollution causes several health outcomes and has been associated with increased mortality, premature mortality, and morbidity. Ambient exposure to PM 2.5 is currently considered the leading environmental risk factor globally. A causal relationship between exposure to PM 2.5 and the contribution of this exposure to cardiovascular morbidity and mortality was already demonstrated by the American Heart Association. Methods To estimate the burden of mortality attributable to environmental risk factors, a comparative risk assessment was performed, considering a “top-down” approach. This approach uses an existing estimate of mortality of the disease endpoint by all causes as a starting point. A population attributable fraction was calculated for the exposure to PM 2.5 the overall burden of IHD and stroke was multiplied by the PAF to determine the burden attributable to this risk factor. The avoidable burden was calculated using the potential impact fraction (PIF) and considering the WHO-AQG 2021 as an alternative scenario. Results Between 2011 and 2021, the ambient exposure to PM 2.5 resulted in a total of 288,862.7 IHD YLL and a total of 420,432.3 stroke YLL in Portugal. This study found a decreasing trend in the mortality burden attributable to PM2.5 exposure, for both males and females and different age-groups. For different regions of Portugal, the same trend was observed in the last years. The mortality burden attributable to long-term exposure to PM 2.5 was mainly concentrated in Lisbon Metropolitan Area, North and Centre. Changes in the exposure limits to the WHO recommended value of exposure (WHO-AQG 2021) have a reduction in the mortality burden due to IHD and stroke attributable to PM 2.5 exposure, in Portugal. Conclusion Between 2011 and 2021, approximately 22% and 23% of IHD and stroke deaths were attributable to PM 2.5 exposure. Nevertheless, the mortality burden attributable to cardiovascular diseases has been decreasing in last years in Portugal. Our findings provide evidence of the impact of air pollution on human health, which are crucial for decision-making, at the national and regional level.
Three rate-determining protein roles in photosynthetic O2-evolution addressed by time-resolved experiments on genetically modified photosystems
Light-driven water splitting by plants, algae and cyanobacteria is pivotal for global bioenergetics and biomass formation. A manganese cluster bound to the photosystem II proteins catalyzes the complex reaction at high rate, but the rate-determining factors are insufficiently understood. Here we trace the oxygen-evolution transition by time-resolved polarography and infrared spectroscopy for cyanobacterial photosystems genetically modified at two strategic sites, complemented by computational chemistry. Our results highlight three rate-determining roles of the protein environment of the metal cluster: acceleration of proton-coupled electron transfer, acceleration of substrate-water insertion after O 2 -formation, and balancing of rate-determining enthalpic and entropic contributions. Whereas in general the substrate-water insertion step may be unresolvable in time-resolved experiments, here it likely becomes traceable because of deceleration by genetic modification. Our results may stimulate new time-resolved experiments on substrate-water insertion in photosynthesis, clarification of enthalpy-entropy compensation in enzyme catalysis, and knowledge-guided development of inorganic catalyst materials. Combining time-resolved IR spectroscopy, activation energy analyses, and computations, authors provide mechanistic insight into genetically altered reaction kinetics of light-driven oxygen evolution in photosystem II.
Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches
Swine production workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 (AFB1) in Portuguese swine production farms has already been reported. However, besides AFB1, data regarding fungal contamination showed that exposure to other mycotoxins could be expected in this setting. The present study aimed to characterize the occupational exposure to multiple mycotoxins of swine production workers. To provide a broad view on the burden of contamination by mycotoxins and the workers’ exposure, biological (urine) samples from workers (n = 25) and 38 environmental samples (air samples, n = 23; litter samples, n = 5; feed samples, n = 10) were collected. The mycotoxins biomarkers detected in the urine samples of the workers group were the deoxynivalenol-glucuronic acid conjugate (60%), aflatoxin M1 (16%), enniatin B (4%), citrinin (8%), dihydrocitrinone (12%) and ochratoxin A (80%). Results of the control group followed the same pattern, but in general with a lower number of quantifiable results (
3D Quantitative Mineral Characterization of Particles Using X-ray Computed Tomography
A new method to measure and quantify the 3D mineralogical composition of particulate materials using X-ray computed micro-tomography (CT) is presented. The new method is part of a workflow designed to standardize the analysis of particles based on their microstructures without the need to segment the individual classes or grains. Classification follows a decision tree with criteria derived from particle histogram parameters that are specific to each microstructure, which in turn can be identified by 2D-based automated quantitative mineralogy. The quantification of mineral abundances is implemented at the particle level according to the complexity of the particle by taking into consideration the partial volume effect at interphases. The new method was tested on two samples with different particle size distributions from a carbonate rock containing various microstructures and phases. The method allowed differentiation and quantification of more mineral classes than traditional 3D image segmentation that uses only the grey-scale for mineral classification. Nevertheless, due to lower spatial resolution and lack of chemical information, not all phases identified in 2D could be distinguished. However, quantification of the mineral classes that could be distinguished was more representative than their 2D quantification, especially for coarser particle sizes and for minor phases. Therefore, the new 3D method shows great potential as a complement to 2D-based methods and as an alternative to traditional phase segmentation analysis of 3D images. Particle-based quantification of mineralogical and 3D geometrical properties of particles opens new applications in the raw materials and particle processing industries.