Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,759 result(s) for "Atsushi Saito"
Sort by:
Ultrasensitive detection of SARS-CoV-2 nucleocapsid protein using large gold nanoparticle-enhanced surface plasmon resonance
The COVID-19 pandemic has created urgent demand for rapid detection of the SARS-CoV-2 coronavirus. Herein, we report highly sensitive detection of SARS-CoV-2 nucleocapsid protein (N protein) using nanoparticle-enhanced surface plasmon resonance (SPR) techniques. A crucial plasmonic role in significantly enhancing the limit of detection (LOD) is revealed for exceptionally large gold nanoparticles (AuNPs) with diameters of hundreds of nm. SPR enhanced by these large nanoparticles lowered the LOD of SARS-CoV-2 N protein to 85 fM, resulting in the highest SPR detection sensitivity ever obtained for SARS-CoV-2 N protein.
N‐glycosylation regulates MET processing and signaling
MET, the receptor for the hepatocyte growth factor (HGF), is strongly associated with resistance to tyrosine kinase inhibitors, key drugs that are used in the therapy of non–small cell lung cancer. MET contains 11 potential N‐glycosylation sites, but the site‐specific roles of these N‐glycans have not been elucidated. We report herein that these N‐glycans regulate the proteolytic processing of MET and HGF‐induced MET signaling, and that this regulation is site specific. Inhibitors of N‐glycosylation were found to suppress the processing and trafficking of endogenous MET in H1975 and EBC‐1 lung cancer cells and exogenous MET in CHO‐K1 cells. We purified the recombinant extracellular domain of human MET and determined the site‐specific N‐glycan structures and occupancy using mass spectrometry. The results indicated that most sites were fully glycosylated and that the dominant population was the complex type. To examine the effects of the deletion of N‐glycans of MET, we prepared endogenous MET knockout Flp‐In CHO cells and transfected them with a series of N‐glycan–deletion mutants of MET. The results showed that several N‐glycans are implicated in the processing of MET. The findings also suggested that the N‐glycans of the SEMA domain of MET positively regulate HGF signaling, and the N‐glycans of the region other than the SEMA domain negatively regulate HGF signaling. Processing, cell surface expression, and signaling were significantly suppressed in the case of the all‐N‐glycan–deletion mutant. The overall findings suggest that N‐glycans of MET affect the status and the function of the receptor in a site‐specific manner. N‐glycans of the SEMA domain of MET positively regulate hepatocyte growth factor (HGF) signaling, and the N‐glycans of the region other than the SEMA domain negatively regulate HGF signaling. Processing and signaling were significantly suppressed in the case of the all‐N‐glycan–deletion mutant. The overall findings suggest that N‐glycans of MET affect the status and the function of the receptor in a site‐specific manner.
Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue
Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.
Unfolded Protein Response-Dependent Communication and Contact among Endoplasmic Reticulum, Mitochondria, and Plasma Membrane
The function of the endoplasmic reticulum (ER) can be impaired by changes to the extra- and intracellular environment, such as disruption of calcium homeostasis, expression of mutated proteins, and oxidative stress. In response to disruptions to ER homeostasis, eukaryotic cells activate canonical branches of signal transduction cascades, collectively termed the unfolded protein response (UPR). The UPR functions to remove or recover the activity of misfolded proteins that accumulated in the ER and to avoid irreversible cellular damage. Additionally, the UPR plays unique physiological roles in the regulation of diverse cellular events, including cell differentiation and development and lipid biosynthesis. Recent studies have shown that these important cellular events are also regulated by contact and communication among organelles. These reports suggest strong involvement among the UPR, organelle communication, and regulation of cellular homeostasis. However, the precise mechanisms for the formation of contact sites and the regulation of ER dynamics by the UPR remain unresolved. In this review, we summarize the current understanding of how the UPR regulates morphological changes to the ER and the formation of contact sites between the ER and other organelles. We also review how UPR-dependent connections between the ER and other organelles affect cellular and physiological functions.
Therapeutic effect of long-acting muscarinic antagonist for treating uncontrolled asthma assessed using impulse oscillometry
Background In recent years, the incorporation of LAMAs into asthma therapy has been expected to enhance symptom control. However, a significant number of patients with asthma continue to experience poorly managed symptoms. There have been limited investigations on LAMA-induced airway alterations in asthma treatment employing IOS. In this study, we administered a LAMA to patients with poorly controlled asthma, evaluated clinical responses and respiratory function, and investigated airway changes facilitated by LAMA treatments using the IOS. Methods Of a total of 1282 consecutive patients with asthma, 118 exhibited uncontrolled symptoms. Among them, 42 switched their treatment to high-dose fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) (ICS/LABA/LAMA). The patients were then assessed using AHQ-33 or LCQ and ACT. Spirometry parameters (such as FEV 1 or MMEF) and IOS parameters (such as R20 or AX) were measured and compared before and after exacerbations and the addition of LAMA. Results Of the 42 patients, 17 who switched to FF/UMEC/VI caused by dyspnea exhibited decreased pulmonary function between period 1 and baseline, followed by an increase in pulmonary function between baseline and period 2. Significant differences were observed in IOS parameters such as R20, R5-R20, Fres, or AX between period 1 and baseline as well as between baseline and period 2. Among the patients who switched to inhaler due to cough, 25 were classified as responders (n = 17) and nonresponders (n = 8) based on treatment outcomes. Among nonresponders, there were no significant differences in spirometry parameters such as FEV 1 or PEF and IOS parameters such as R20 or AX between period 1 and baseline. However, among responders, significant differences were observed in all IOS parameters, though not in most spirometry parameters, between period 1 and baseline. Furthermore, significant differences were noted between baseline and period 2 in terms of FEV 1 , %MMEF, %PEF, and all IOS parameters. Conclusion ICS/LABA/LAMA demonstrates superiority over ICS/LABA in improving symptoms and lung function, which is primarily attributed to the addition of LAMA. Additionally, IOS revealed the effectiveness of LAMA across all airway segments, particularly in the periphery. Hence, LAMA can be effective against various asthma phenotypes characterized by airway inflammation, even in real-world cases.
Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division
Dynamin-related protein 1 (Drp1) divides mitochondria as a mechano-chemical GTPase. However, the function of Drp1 beyond mitochondrial division is largely unknown. Multiple Drp1 isoforms are produced through mRNA splicing. One such isoform, Drp1ABCD, contains all four alternative exons and is specifically expressed in the brain. Here, we studied the function of Drp1ABCD in mouse neurons in both culture and animal systems using isoform-specific knockdown by shRNA and isoform-specific knockout by CRISPR/Cas9. We found that the expression of Drp1ABCD is induced during postnatal brain development. Drp1ABCD is enriched in dendritic spines and regulates postsynaptic clathrin-mediated endocytosis by positioning the endocytic zone at the postsynaptic density, independently of mitochondrial division. Drp1ABCD loss promotes the formation of ectopic dendrites in neurons and enhanced sensorimotor gating behavior in mice. These data reveal that Drp1ABCD controls postsynaptic endocytosis, neuronal morphology and brain function.
Impact of Nuclear Envelope Stress on Physiological and Pathological Processes in Central Nervous System
The nuclear envelope (NE) separates genomic DNA from the cytoplasm and provides the molecular platforms for nucleocytoplasmic transport, higher-order chromatin organization, and physical links between the nucleus and cytoskeleton. Recent studies have shown that the NE is often damaged by various stresses termed “NE stress”, leading to critical cellular dysfunction. Accumulating evidence has revealed the crucial roles of NE stress in the pathology of a broad spectrum of diseases. In the central nervous system (CNS), NE dysfunction impairs neural development and is associated with several neurological disorders, such as Alzheimer’s disease and autosomal dominant leukodystrophy. In this review, the structure and functions of the NE are summarized, and the concepts of NE stress and NE stress responses are introduced. Additionally, the significant roles of the NE in the development of CNS and the mechanistic connections between NE stress and neurological disorders are described.
An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato
Key messageAn NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2.Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.
Exploring the Potential of a P2X3 Receptor Antagonist: Gefapixant in the Management of Persistent Cough Associated with Interstitial Lung Disease
Background: Interstitial lung disease (ILD) is characterized by pulmonary inflammation and fibrosis associated with persistent and refractory cough that significantly hinders quality of life. Conventional treatments for ILD-associated cough have shown limited efficacy, necessitating alternative therapeutic approaches. Gefapixant, a P2X3 receptor antagonist, can potentially alleviate chronic cough by inhibiting the ATP-mediated activation of sensory C-fibers, but its efficacy in ILD-associated cough remains unclear. This study observed the effects of gefapixant on ILD-associated refractory chronic cough. Methods: This prospective study enrolled patients with ILD-associated refractory chronic cough who received gefapixant at Sapporo Medical University Hospital between July 2022 and November 2023. Cough frequency, Leicester Cough Questionnaire (LCQ) score, cough severity visual analog scale (Cough VAS), and taste VAS were evaluated at baseline and at 2, 4, and 8 weeks after gefapixant administration. Results: Six patients completed the study. Their ILD subtypes included idiopathic pulmonary fibrosis (IPF), nonspecific interstitial pneumonia (NSIP), and connective tissue disease-associated ILDs (CTD-ILDs). After 8 weeks, the cough frequency decreased from 88.5 to 44.3 episodes per 30 min, LCQ scores increased from 8.3 to 13.6, and cough VAS scores decreased from 75.8 to 40.2. However, statistical significance was not reached due to high interindividual variability, with gefapixant being effective in some and ineffective in others. The most common adverse event was taste disorder, leading to discontinuation in one patient, but symptoms tended to lessen over the course of treatment. Conclusions: Gefapixant appears to be effective in reducing refractory cough related to ILD, although these results were not statistically significant because its effectivity widely varied across individuals. Further investigation is needed to identify patient subgroups with the greatest potential for treatment responsiveness.
Analysis of the Mild strain of tomato yellow leaf curl virus, which overcomes Ty-2 gene–mediated resistance in tomato line H24
In tomato line H24, an isolate of the Mild (Mld) strain of tomato yellow leaf curl virus (TYLCV-Mld [JR:Kis]) overcomes Ty-2 gene–mediated resistance and causes typical symptoms of tomato yellow leaf curl disease (TYLCD). No systemic infection with visible symptoms or accumulation of viral DNA in the upper leaves was observed in H24 challenged with another isolate, TYLCV-IL (TYLCV-IL [JR:Osaka]), confirming that H24 is resistant to the IL strain. To elucidate the genomic regions that cause the breakdown of the Ty-2 gene–mediated resistance, we constructed a series of chimeras by swapping genes between the two strains. A chimeric virus that had the overlapping C4/Rep region of the Mld strain in the context of the IL strain genome, caused severe TYLCD in H24 plants, suggesting that the overlapping C4/Rep region of the Mld strain is associated with the ability of this strain to overcome Ty-2 gene–mediated resistance.