Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Attri, Shivani"
Sort by:
Neuromodulatory effect of 4-(methylthio)butyl isothiocyanate against 3-nitropropionic acid induced oxidative impairments in human dopaminergic SH-SY5Y cells via BDNF/CREB/TrkB pathway
Mitochondrial impairment, energetic crisis and elevated oxidative stress have been demonstrated to play a pivotal role in the pathological processes of Huntington’s disease (HD). 3-Nitropropionic acid (3-NPA) is a natural neurotoxin that mimics the neurological dysfunctions, mitochondrial impairments and oxidative imbalance of HD. The current investigation was undertaken to demonstrate the neuroprotective effect of 4-(methylthio)butyl isothiocyanate (4-MTBITC) against the 3-NPA induced neurotoxicity in human dopaminergic SH-SY5Y cells. The experimental evidence of oxidative DNA damage by 3-NPA was elucidated by pBR322 DNA nicking assay. In contrast, the 4-MTBITC considerably attenuated the DNA damage, suggesting its free radical scavenging action against 3-NPA and Fenton's reagent. The dose and time-dependent increase of 3-NPA revealed its neurotoxic dose as 0.5 mM after 24 h of treatment of SH-SY5Y cells in MTT assay. In order to determine the optimal dose at which 4-MTBITC protects cell death, the 3-NPA (IC 50 ) induced cells were pretreated with different concentrations of 4-MTBITC for 1 h. The neuroprotective dose of 4-MTBITC against 3-NPA was found to be 0.25 μM. Additionally, the elevated GSH levels in cells treated with 4-MTBITC indicate its propensity to eliminate reactive species generated as a result of 3-NPA-induced mitochondrial dysfunction. Likewise, it was determined through microscopic and flow cytometric experiments that 3-NPA's induced overproduction of reactive species and a decline in mitochondrial membrane potential (MMP) could be efficiently prevented by pre-treating cells with 4-MTBITC. To elucidate the underlying molecular mechanism, the RT-qPCR analysis revealed that the pre-treatment of 4-MTBITC effectively protected neuronal cells against 3-NPA-induced cell death by preventing Caspase-3 activation, Brain-derived neurotrophic factor (BDNF) upregulation, activation of cAMP response element-binding protein (CREB) and Nrf2 induction. Together, our findings lend credence to the idea that pre-treatment with 4-MTBITC reduced 3-NPA-induced neurotoxicity by lowering redox impairment, apoptotic state, and mitochondrial dysfunction. The present work, in conclusion, presented the first proof that the phytoconstituent 4-MTBITC supports the antioxidant system, BDNF/TrkB/CREB signaling, and neuronal survival in dopaminergic SH-SY5Y cells against 3-NPA-induced oxidative deficits.
Modulation of atrazine-induced chromosomal aberrations and cyclin-dependent kinases by aqueous extract of Roylea cinerea (D.Don) Baillon leaves in Allium cepa
Roylea cinerea (D.Don) Baillon an indigenous medicinal plant of Lamiaceae family used for the treatment of several diseases. In the present study, its aqueous (leaves) extract was tested for genoprotective action against atrazine-induced chromosomal aberrations in the root tip cells of Allium cepa . Atrazine is a herbicide of triazine class commonly used to inhibit the growth of broad leaf and grassy weeds. In order to find the concentration of atrazine that exhibits maximum toxicity, its different concentrations (1, 5 and 10 µg/mL) were tested. It was observed that 10 µg/mL concentration was more toxic as it reduced the mitotic index and also increased the chromosomal aberrations. Among all the tested concentrations of aqueous (leaves) extracts (0.25. 0.5, 1.0, 1.5 and 3.0 µg/mL), the3.0 µg/mL concentration in both modes of experiments i.e. pre and post showed a significant reduction in chromosomal aberrations induced by atrazine. To understand the mechanism of protection by plant extract on atrazine-induced chromosomal abnormalities the RT-qPCR studies were conducted to observe the expression of marker genes Cyclin-dependent kinases (CDKs) (CDKA:1, CDKB2:1 and CDKD1:1. For this, the RNA was extracted from root tips treated with extract along with atrazine by TRIzol ® . It was observed that aqueous extract of Roylea cinerea (D.Don) Baillon leaves upregulated the CDKs gene expression in both the modes i.e. pre and post treatments. A critical analysis of results indicated that aqueous extract ameliorated the chromosomal aberrations caused by atrazine which may be be due to the increased expression level of CDKs genes.
Induction of apoptosis in A431 cells via ROS generation and p53-mediated pathway by chloroform fraction of Argemone mexicana (Pepaveraceae)
Argemone mexicana (Pepaveraceae) is an important medicinal plant commonly known as ‘maxican prickly poppy’ and is traditionally used to treat skin diseases. In the present study, the extract/fractions of aerial parts of A. mexicana after carrying out the organoleptic characteristics were sequentially extracted with the solvents of increasing polarities. Total fractions were examined for their radical scavenging activities in DPPH and DNA nicking assays . Among all, maximum antioxidant activity was shown by chloroform fraction ( AmC ) in DPPH assay with IC 50 of 26.12 μg/ml, and DNA nicking assay showed 80.91% protective potential. The AmC fraction was analyzed for its antibacterial, cytotoxic potential, cell cycle analysis, mitochondrial membrane potential (MMP) and accumulation of reactive oxygen species (ROS) using A431 cell line. The AmC fraction exhibited remarkable antibacterial activity against bacterial strains in the order Klebsiella pneumoniae > Bacillussubtilis > Salmonella typhi > Staphylococcus epidermidis . The cytotoxic potential of the AmC fraction was analyzed in skin epidermoid carcinoma (A431) cells, osteosarcoma (MG-63) and cervical (HeLa) cell lines with a GI 50 value of 47.04 μg/ml, 91.46 μg/ml and 102.90 μg/ml, respectively. The AmC fraction was extended further to explore its role in cell death using A431 cell line. Phase contrast and scanning electron microscopic studies on A431 cells exhibited all the characteristics indicative of apoptosis, viz., viability loss, cell shrinkage, cell rounding-off, DNA fragmentation and formation of apoptotic bodies. Flow cytometric analysis revealed enhanced ROS level, decreased MMP and arrest cell cycle at the G 0 /G 1 phase further strengthened cell death by apoptosis. Increased expressions of apoptotic markers (p53, PUMA, cyt c, Fas and Apaf-1) were confirmed by RT-qPCR analysis. Furthermore, the AmC fraction was subjected to ultra-high-performance liquid chromatography, which revealed the presence of different polyphenols in the order: caffeic acid> epicatechin> kaempferol> chlorogenic acid> gallic acid> catechin> ellagic acid >umbeliferone> quercetin> coumaric acid. A critical analysis of results revealed that the AmC fraction induced cell death in epidermoid carcinoma cells via ROS and p53-mediated apoptotic pathway which may be ascribed to the presence of polyphenols in it.
Antioxidant and chemoprotective potential of Streptomyces levis strain isolated from human gut
In the current study, Streptomyces levis strain HFM-2 has been isolated from healthy human gut. Streptomyces sp. HFM-2 was identified based on the polyphasic approach that included cultural, morphological, chemotaxonomical, phylogenetic, physiological, and biochemical characteristics. 16S rRNA gene sequence of strain HFM-2 exhibited 100% similarity with Streptomyces levis strain 15423 (T). The EtOAc extract of Streptomyces levis strain HFM-2 showed potential antioxidant activity, along with 69.53 ± 0.19%, 64.76 ± 0.13%, and 84.82 ± 0.21% of scavenging activity for ABTS, DPPH, and superoxide radicals, respectively at 600 µg/mL. The IC 50 values i.e. 50% scavenging activity for DPPH, ABTS, and superoxide radicals were achieved at 497.19, 388.13, and 268.79 (µg/mL), respectively. The extract's reducing power and total antioxidant capacity were determined to be 856.83 ± 0.76 and 860.06 ± 0.01 µg AAE/mg of dry extract, respectively. In addition, the EtOAc extract showed protection against DNA damage from oxidative stress caused by Fenton’s reagent, and cytotoxic activity against HeLa cervical cancer, Skin (431) cancer, Ehrlich-Lettre Ascites-E (EAC) carcinoma, and L929 normal cell lines. The IC 50 values against HeLa, 431 skin, and EAC carcinoma cell lines were found to be 50.69, 84.07, and 164.91 µg/mL, respectively. The EtOAc extract showed no toxicity  towards L929 normal cells. In addition, flow cytometric analysis exhibited reduced mitochondrial membrane potential (MMP), and enhanced levels of reactive oxygen species (ROS). The EtOAc extract was chemically analyzed using GCMS to determine the components executing its bioactivities.
Development and optimization of nanoparticles loaded with erucin, a dietary isothiocyanate isolated from Eruca sativa: Antioxidant and antiproliferative activities in ehrlich-ascites carcinoma cell line
The study on Erucin (ER) has gained interest of nutraceutical and pharmaceutical industries because of its anti-cancer properties. Erucin is an isothiocyanate obtained from the seeds of Eruca sativa which possess certain drawbacks such as poor aqueous solubility and bioavailability. Therefore, the present study aimed at developing ER-cubosomes (CUB) by solvent evaporation technique followed by applying Central Composite Design to optimize ER loaded cubosomes. For this purpose, independent variables selected were Monoolein (MO) as lipid and Pluronic-84 (P-84) as a stabilizer whereas dependent variables were particle size, percentage of ER loading and percentage of its entrapment efficiency. The cubosomal nanocarriers exhibited particle size in the range of 26 nm, entrapment efficiency of 99.12 ± 0.04% and drug loading of 3.96 ± 0.0001%. Furthermore, to investigate the antioxidant potential, we checked the effect of ER and ER-CUB by DNA nicking assay, DDPH assay and Phosphomolybdate assay, and results showed significant improvement in antioxidant potential for ER-CUB than ER. Similarly, ER-CUB showed enhanced anticancer activity with a marked reduction in IC50 value than ER in MTT assay. These results suggested that ER-CUB produced notable escalation in antioxidant potential and enhanced anticancer activity than ER.
Bakuchiol nanoemulsion loaded electrospun nanofibers for the treatment of burn wounds
The present work aims to develop and evaluate the wound healing potential of bakuchiol nanoemulsion loaded electrospun scaffolds. Since oxidative stress and microbial burden leads the burn wounds to become chronic and fatal to patients, a phytoconstituent, bakuchiol (BAK), was screened on the basis of antioxidant and antimicrobial potential which also defined its dose. Furthermore, BAK was incorporated into a nanoemulsion to enhance its therapeutic efficacy, reduce its dosage frequency, and maximize its stability. The present study is inclined towards the collaborative interaction of natural products and novel drug delivery systems to develop safe and therapeutically efficient systems for burn wound healing. The optimized nanoemulsion showed excellent antioxidant and antimicrobial potential against wound susceptible pathogens, i.e., Candida albicans and Methicillin-resistant Staphylococcus aureus which was further loaded into gelatin based hydrogel and nanofibrous scaffold system. The mesh structure of scaffolds was chosen as a suitable carrier system for wound healing process not only because it offers resemblance to skin’s anatomy but is also capable of providing uniform distribution of wound biomarkers across the skin. The prepared nanofibers were assessed for their analgesic, anti-inflammatory, and wound healing potential which was observed to be significantly better than its gel formulation.
Antioxidant and chemoprotective potential of Streptomyceslevis strain isolated from human gut
In the current study, Streptomyces levis strain HFM-2 has been isolated from healthy human gut. Streptomyces sp. HFM-2 was identified based on the polyphasic approach that included cultural, morphological, chemotaxonomical, phylogenetic, physiological, and biochemical characteristics. 16S rRNA gene sequence of strain HFM-2 exhibited 100% similarity with Streptomyces levis strain 15423 (T). The EtOAc extract of Streptomyces levis strain HFM-2 showed potential antioxidant activity, along with 69.53 ± 0.19%, 64.76 ± 0.13%, and 84.82 ± 0.21% of scavenging activity for ABTS, DPPH, and superoxide radicals, respectively at 600 µg/mL. The IC 50 values i.e. 50% scavenging activity for DPPH, ABTS, and superoxide radicals were achieved at 497.19, 388.13, and 268.79 (µg/mL), respectively. The extract's reducing power and total antioxidant capacity were determined to be 856.83 ± 0.76 and 860.06 ± 0.01 µg AAE/mg of dry extract, respectively. In addition, the EtOAc extract showed protection against DNA damage from oxidative stress caused by Fenton’s reagent, and cytotoxic activity against HeLa cervical cancer, Skin (431) cancer, Ehrlich-Lettre Ascites-E (EAC) carcinoma, and L929 normal cell lines. The IC 50 values against HeLa, 431 skin, and EAC carcinoma cell lines were found to be 50.69, 84.07, and 164.91 µg/mL, respectively. The EtOAc extract showed no toxicity  towards L929 normal cells. In addition, flow cytometric analysis exhibited reduced mitochondrial membrane potential (MMP), and enhanced levels of reactive oxygen species (ROS). The EtOAc extract was chemically analyzed using GCMS to determine the components executing its bioactivities.
Assessment of anti-psoriatic activity of bakuchiol-loaded solid lipid nanoparticles-based gel: design, characterization, and mechanistic insight via NF-kB signaling pathway
The aim of the current study is to evaluate the anti-psoriatic potential of bakuchiol (Bak) loaded solid lipid nanoparticles (SLNs) via modulating inflammatory and oxidative pathways. Bak-loaded SLNs were prepared using hot homogenization method and characterized by various spectroscopic techniques. Bak-SLNs suspension was formulated into gel using Carbopol. Different in vivo assays were executed to explore the role of inflammatory markers and oxidative enzymes in psoriasis. DLS (dynamic light scattering) analysis showed suitable particle size, zeta potential, and polydispersity index (PDI) of developed formulation. TEM (transmission electron microscopy) reveal the spherical shape of Bak-SLNs particles. The release studies confirmed the sustained release of Bak-SLNs-based gel. UV-B-induced psoriatic Wistar rat model showed significant anti-psoriatic effect of Bak via regulating inflammatory markers (NF-kB, IL-6, IL-4, and IL-10) and levels of anti-oxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-S-transferase (GST). Furthermore, RT-qPCR analysis confirms that Bak downregulates the expression of inflammatory markers, while histology and immunohistology results also confirm the anti-psoriatic effect of Bak. The study indicates that Bak-loaded SLNs-based gel significantly downregulates the level of cytokines and interleukins involve in NF-kB signaling cascade; hence, it can prove to be a novel therapeutic approach to cure psoriasis.
RETRACTED ARTICLE: Assessment of anti-psoriatic activity of bakuchiol-loaded solid lipid nanoparticles-based gel: design, characterization, and mechanistic insight via NF-kB signaling pathway
The aim of the current study is to evaluate the anti-psoriatic potential of bakuchiol (Bak) loaded solid lipid nanoparticles (SLNs) via modulating inflammatory and oxidative pathways. Bak-loaded SLNs were prepared using hot homogenization method and characterized by various spectroscopic techniques. Bak-SLNs suspension was formulated into gel using Carbopol. Different in vivo assays were executed to explore the role of inflammatory markers and oxidative enzymes in psoriasis. DLS (dynamic light scattering) analysis showed suitable particle size, zeta potential, and polydispersity index (PDI) of developed formulation. TEM (transmission electron microscopy) reveal the spherical shape of Bak-SLNs particles. The release studies confirmed the sustained release of Bak-SLNs-based gel. UV-B-induced psoriatic Wistar rat model showed significant anti-psoriatic effect of Bak via regulating inflammatory markers (NF-kB, IL-6, IL-4, and IL-10) and levels of anti-oxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-S-transferase (GST). Furthermore, RT-qPCR analysis confirms that Bak downregulates the expression of inflammatory markers, while histology and immunohistology results also confirm the anti-psoriatic effect of Bak. The study indicates that Bak-loaded SLNs-based gel significantly downregulates the level of cytokines and interleukins involve in NF-kB signaling cascade; hence, it can prove to be a novel therapeutic approach to cure psoriasis.