Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
173
result(s) for
"Atwater, Harry A."
Sort by:
All-day fresh water harvesting by microstructured hydrogel membranes
by
Greer, Julia R.
,
Ilic, Ognjen
,
Shi, Ye
in
639/301/923/1027
,
639/4077/4072/4062
,
639/638/298/923/1028
2021
Solar steam water purification and fog collection are two independent processes that could enable abundant fresh water generation. We developed a hydrogel membrane that contains hierarchical three-dimensional microstructures with high surface area that combines both functions and serves as an all-day fresh water harvester. At night, the hydrogel membrane efficiently captures fog droplets and directionally transports them to a storage vessel. During the daytime, it acts as an interfacial solar steam generator and achieves a high evaporation rate of 3.64 kg m
−2
h
−1
under 1 sun enabled by improved thermal/vapor flow management. With a homemade rooftop water harvesting system, this hydrogel membrane can produce fresh water with a daily yield of ~34 L m
−2
in an outdoor test, which demonstrates its potential for global water scarcity relief.
Solar steam water purification and fog collection are two independent processes that could enable abundant fresh water generation. Here, the authors develop a hydrogel membrane that contains microstructures and combines both functions and serves as an all-day fresh water harvester.
Journal Article
Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects
2019
Light is a powerful tool to manipulate matter, but existing approaches often necessitate focused, high-intensity light that limits the manipulated object’s shape, material and size. Here, we report that self-stabilizing optical manipulation of macroscopic—millimetre-, centimetre- and even metre-scale—objects could be achieved by controlling the anisotropy of light scattering along the object’s surface. In a scalable design that features silicon resonators on silica substrate, we identify nanophotonic structures that can self-stabilize when rotated and/or translated relative to the optical axis. Nanoscale control of scattering across a large area creates restoring behaviour by engineering the scattered phase, without needing to focus incident light or excessively constrain the shape, size or material composition of the object. Our findings may lead to platforms for manipulating macroscopic objects, with applications ranging from contactless wafer-scale fabrication and assembly, to trajectory control for ultra-light spacecraft and even laser-propelled light sails for space exploration.Mechanical stability of macroscopic structures on the millimetre-, centimetre- and even metre-scale could be realized by tailoring the anisotropy of light scattering along the object’s surface, without needing to focus incident light or excessively constrain the shape, size or material composition of the object.
Journal Article
Plasmonics for improved photovoltaic devices
2010
This review article surveys the potential of using plasmonic nanostructures to enhance the absorption of photovoltaic devices. As a result, the physical thickness of solar cells can be reduced, leading to new photovoltaic-device designs.
The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.
Journal Article
Low-Loss Plasmonic Metamaterials
2011
New materials are being developed that meet the requirements for nanoscale photonics. Metamaterials (MMs) are artificial, engineered materials with rationally designed compositions and arrangements of nanostructured building blocks. These materials can be tailored for almost any application because of their extraordinary response to electromagnetic, acoustic, and thermal waves that transcends the properties of natural materials ( 1 – 3 ). The astonishing MM-based designs and demonstrations range from a negative index of refraction, focusing and imaging with sub-wavelength resolution, invisibility cloaks, and optical black holes to nanoscale optics, data processing, and quantum information applications ( 3 ). Metals have traditionally been the material of choice for the building blocks, but they suffer from high resistive losses—even metals with the highest conductivities, silver and gold, exhibit excessive losses at optical frequencies that restrict the development of devices in this frequency range. The development of new materials for low-loss MM components and telecommunication devices is therefore required.
Journal Article
Efficiency limits for photoelectrochemical water-splitting
by
Lewerenz, Hans Joachim
,
Fountaine, Katherine T.
,
Atwater, Harry A.
in
119/118
,
639/4077/909/4101/4050
,
639/4077/909/4101/4102
2016
Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community’s focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance and catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.
Theoretical limiting efficiencies play a critical role in determining technological viability and expectations for device prototypes. Here, the authors present a unified framework for photoelectrochemical device performance through which previous limiting efficiencies can be understood and contextualized.
Journal Article
Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces
2019
Tunable metasurfaces enable dynamical control of the key constitutive properties of light at a subwavelength scale. To date, electrically tunable metasurfaces at near-infrared wavelengths have been realized using free carrier modulation, and switching of thermo-optical, liquid crystal and phase change media. However, the highest performance and lowest loss discrete optoelectronic modulators exploit the electro-optic effect in multiple-quantum-well heterostructures. Here, we report an all-dielectric active metasurface based on electro-optically tunable III–V multiple-quantum-wells patterned into subwavelength elements that each supports a hybrid Mie-guided mode resonance. The quantum-confined Stark effect actively modulates this volumetric hybrid resonance, and we observe a relative reflectance modulation of 270% and a phase shift from 0° to ~70°. Additionally, we demonstrate beam steering by applying an electrical bias to each element to actively change the metasurface period, an approach that can also realize tunable metalenses, active polarizers, and flat spatial light modulators.
Here, the authors demonstrate an electrically tunable metasurface with III–V semiconducting MQW structures as resonant metasurface elements. The amplitude and phase of the light reflected from the metasurface can be continuously tuned by applying DC electric field across the MQW metasurface elements.
Journal Article
A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater
2020
Capture and conversion of CO
2
from oceanwater can lead to net-negative emissions and can provide carbon source for synthetic fuels and chemical feedstocks at the gigaton per year scale. Here, we report a direct coupled, proof-of-concept electrochemical system that uses a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO
2
reduction (CO
2
R) cell to capture and convert CO
2
from oceanwater. The BPMED cell replaces the commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and demonstrates the ability to capture CO
2
at an electrochemical energy consumption of 155.4 kJ mol
−1
or 0.98 kWh kg
−1
of CO
2
and a CO
2
capture efficiency of 71%. The direct coupled, vapor-fed CO
2
R cell yields a total Faradaic efficiency of up to 95% for electrochemical CO
2
reduction to CO. The proof-of-concept system provides a unique technological pathway for CO
2
capture and conversion from oceanwater with only electrochemical processes.
Isolating CO
2
to use in electrochemical CO
2
reduction systems is an ongoing issue. Here, the authors present a proof-of-concept integrated system combining a bipolar membrane electrodialysis cell with a vapor-fed CO
2
reduction cell for capture and conversion of CO
2
from oceanwater.
Journal Article
Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers
by
Aydin, Koray
,
Ferry, Vivian E.
,
Briggs, Ryan M.
in
639/301/1019/1015
,
639/766/25
,
639/925/927/1021
2011
Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials comprising only lossless dielectric materials and highly reflective noble metals represents a new research direction. Here we demonstrate an ultrathin (260 nm) plasmonic super absorber consisting of a metal–insulator–metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays. Our super absorber yields broadband and polarization-independent resonant light absorption over the entire visible spectrum (400–700 nm) with an average measured absorption of 0.71 and simulated absorption of 0.85. Proposed nanostructured absorbers open a path to realize ultrathin black metamaterials based on resonant absorption.
Plasmonic nanostructures and metamaterials can augment the performance of photovoltaic and thermophotovoltaic cells by enhancing their absorption properties. Aydin
et al
. demonstrate a broadband, ultrathin plasmonic super absorber using crossed trapezoids as part of a metal–insulator–metal stack.
Journal Article
Theoretical predictions for hot-carrier generation from surface plasmon decay
by
Goddard III, William A.
,
Sundararaman, Ravishankar
,
Narang, Prineha
in
639/766/25
,
639/766/400/1021
,
Aluminum
2014
Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant.
A full theoretical understanding of plasmon decay into hot carriers will help in applications such as solar cells or photocatalysis. Here, the authors present a quantized plasmon model to calculate the hot-carrier distribution from plasmon decay and show its sensitivity to the band structure of the host metal.
Journal Article
High quality factor metasurfaces for two-dimensional wavefront manipulation
by
Michaeli, Lior
,
Sokhoyan, Ruzan
,
Hail, Claudio U.
in
142/126
,
639/624/399/1015
,
639/925/927/1021
2023
The strong interaction of light with micro- and nanostructures plays a critical role in optical sensing, nonlinear optics, active optical devices, and quantum optics. However, for wavefront shaping, the required local control over light at a subwavelength scale limits this interaction, typically leading to low-quality-factor optical devices. Here, we demonstrate an avenue towards high-quality-factor wavefront shaping in two spatial dimensions based on all-dielectric higher-order Mie-resonant metasurfaces. We design and experimentally realize transmissive band stop filters, beam deflectors and high numerical aperture radial lenses with measured quality factors in the range of 202–1475 at near-infrared wavelengths. The excited optical mode and resulting wavefront control are both local, allowing versatile operation with finite apertures and oblique illumination. Our results represent an improvement in quality factor by nearly two orders of magnitude over previous localized mode designs, and provide a design approach for a new class of compact optical devices.
Wavefront manipulation with metasurfaces is typically limited to low quality factors. Here, the authors show how higher-order Mie modes can be leveraged to design high quality factor optical metasurfaces for wavefront manipulation in two dimensions.
Journal Article