Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Aubriot-Lorton, Marie-Hélène"
Sort by:
A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas
Chordoid glioma (ChG) is a characteristic, slow growing, and well-circumscribed diencephalic tumor, whose mutational landscape is unknown. Here we report the analysis of 16 ChG by whole-exome and RNA-sequencing. We found that 15 ChG harbor the same PRKCA D463H mutation. PRKCA encodes the Protein kinase C (PKC) isozyme alpha (PKCα) and is mutated in a wide range of human cancers. However the hot spot PRKCA D463H mutation was not described in other tumors. PRKC A D463H is strongly associated with the activation of protein translation initiation (EIF2) pathway. PKCα D463H mRNA levels are more abundant than wild-type PKCα transcripts, while PKCα D463H is less stable than the PCKα WT protein. Compared to PCKα WT , the PKCα D463H protein is depleted from the cell membrane. The PKCα D463H mutant enhances proliferation of astrocytes and tanycytes, the cells of origin of ChG. In conclusion, our study identifies the hallmark mutation for chordoid gliomas and provides mechanistic insights on ChG oncogenesis. Chordoid glioma is a slow growing diencephalic tumor whose mutational landscape is poorly characterized. Here, the authors perform whole-exome and RNA-sequencing and find that 15 of 16 chordoid glioma cases studied harbor the same PRKCA mutation which results in enhanced proliferation.
Autosomal-recessive SASH1 variants associated with a new genodermatosis with pigmentation defects, palmoplantar keratoderma and skin carcinoma
SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor gene involved in the tumorigenesis of a spectrum of solid cancers. Heterozygous SASH1 variants are known to cause autosomal-dominant dyschromatosis. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous Moroccan family with two affected siblings presenting an unclassified phenotype associating an abnormal pigmentation pattern (hypo- and hyperpigmented macules of the trunk and face and areas of reticular hypo- and hyperpigmentation of the extremities), alopecia, palmoplantar keratoderma, ungueal dystrophy and recurrent spinocellular carcinoma. We identified a homozygous variant in SASH1 (c.1849G>A; p.Glu617Lys) in both affected individuals. Wound-healing assay showed that the patient's fibroblasts were better able than control fibroblasts to migrate. Following the identification of SASH1 heterozygous variants in dyschromatosis, we used reverse phenotyping to show that autosomal-recessive variants of this gene could be responsible for an overlapping but more complex phenotype that affected skin appendages. SASH1 should be added to the list of genes responsible for autosomal-dominant and -recessive genodermatosis, with no phenotype in heterozygous patients in the recessive form, and to the list of genes responsible for a predisposition to skin cancer.
Herpes Simplex Virus Lung Infection in Patients Undergoing Prolonged Mechanical Ventilation
It is not known whether the isolation of herpes simplex virus (HSV) from lower respiratory tract samples of nonimmunocompromised ventilated patients corresponds to bronchial contamination from the mouth and/or throat, local tracheobronchial excretion of HSV, or true HSV lung involvement (bronchopneumonitis) with its own morbidity/mortality. This prospective, single-center, observational study was conducted to define the frequency, risk factors, and relevance of HSV bronchopneumonitis. All consecutive nonimmunocompromised patients receiving mechanical ventilation for 5 days or more were evaluated. Bronchoalveolar lavage, oropharyngeal swabs, and bronchial biopsies (presence of macroscopic bronchial lesions) were obtained for all who deteriorated clinically with suspected lung infection. HSV bronchopneumonitis was defined as this deterioration, associated with HSV in bronchoalveolar lavage and HSV-specific nuclear inclusions in cells recovered during lavage or bronchial biopsies. HSV bronchopneumonitis was diagnosed in 42 (21%) of the 201 patients who deteriorated clinically, with a mean mechanical ventilation duration before diagnosis of 14 +/- 6 days. Risk factors associated with HSV bronchopneumonitis were oral-labial lesions, HSV in the throat, and macroscopic bronchial lesions seen during bronchoscopy. Patients with HSV bronchopneumonitis were comparable to those without at admission, but their courses were more complicated, with longer duration of mechanical ventilation and intensive care unit stays. HSV bronchopneumonitis is common in nonimmunocompromised patients with prolonged mechanical ventilation, is associated with HSV reactivation or infection of the mouth and/or throat, and seems to be associated with poorer outcome.
Pro-angiogenic changes of T-helper lymphocytes in hereditary hemorrhagic telangiectasia
Hereditary hemorrhagic telangiectasia (HHT) is a rare inherited disease due to heterozygous loss-of-function mutations on the BMP9/10 pathway ( ENG, ACVRL1 or MADH4 mainly). HHT endothelial cells are prone to lose their quiescence, leading to progressive appearance of numerous telangiectases on skin and mucosa (complicated by epistaxis and anemia), and to larger arteriovenous malformations in lungs, liver and brain. HHT is also associated with T lymphocyte abnormalities, which are currently poorly understood. We quantified by flow-cytometry the main T lymphocyte circulating subsets in 40 HHT patients and 20 matched healthy controls. Immunostaining was done on 2 HHT skin telangiectases. Disruptions in T lymphocyte homeostasis was observed, characterized by increases in subsets known to promote angiogenesis: Th2 (1.38% vs 1.15%, p=0.021), Th17 (0.32% vs 0.22%, p=0.019 2) and Treg (4.94% vs 3.51%, p= 0.027). T angiogenic lymphocytes (Tang), defined as CD3+CD31+CXCR4+ T cells, were at similar levels in both groups, but the proportion of VEGF-A+ Tang after stimulation was higher in the HHT group compared to controls (68.2% vs 44.9%, p=0.012). The global HHT T lymphopenia predominantly affected the effector memory T-helper cells (200 vs 270 cells/mm 3 , p=0.017), and the lymphocytic infiltrate around HHT telangiectases consisted of memory T-helper cells. The Th17 circulating subset was positively correlated with the monthly epistaxis duration (r coefficient: +0,431, p=0.042), prospectively assessed. HHT T-helper lymphocytes are affected by several pro-angiogenic changes, potentially resulting from their recruitment by abnormal endothelial cells. They could constitute a biologically relevant source of VEGF-A and a valuable therapeutic target in HHT.
Frequent FGFR3 Mutations in Papillary Non-Invasive Bladder (pTa) Tumors
We recently identified activating mutations of fibroblast growth factor receptor 3 (FGFR3) in bladder carcinoma. In this study we assessed the incidence of FGFR3 mutations in a series of 132 bladder carcinomas: 20 carcinoma in situ (CIS), 50 pTa, 19 pT1, and 43 pT2–4. All 48 mutations identified were identical to the germinal activating mutations that cause thanatophoric dysplasia, a lethal form of dwarfism. The S249C mutation, found in 33 of the 48 mutated tumors, was the most common. The frequency of mutations was higher in pTa tumors (37 of 50, 74%) than in CIS (0 of 20, 0%; P < 0.0001), pT1 (4 of 19, 21%; P < 0.0001) and pT2–4 tumors (7 of 43, 16%; P < 0.0001). FGFR3 mutations were detected in 27 of 32 (84%) G1, 16 of 29 (55%) G2, and 5 of 71 (7%) G3 tumors. This association between FGFR3 mutations and low grade was highly significant ( P < 0.0001). FGFR3 is the first gene found to be mutated at a high frequency in pTa tumors. The absence of FGFR3 mutations in CIS and the low frequency of FGFR3 mutations in pT1 and pT2–4 tumors are consistent with the model of bladder tumor progression in which the most common precursor of pT1 and pT2–4 tumors is CIS.
Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities
Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex. [Display omitted]
A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia
Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case.
Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas
Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patterns of nervous system cell types: oligodendrocyte, oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these three subgroups using public datasets. Importantly, the OPC-like group is associated with more aggressive clinical and molecular patterns, including MYC activation. We show that the MYC activation occurs through various alterations, including MYC genomic gain, MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome independently of histological grade. Our study reveals previously unrecognized heterogeneity among 1p/19q co-deleted tumours. Oligodendroglial tumours are characterized into three different molecular subtypes. Here, the authors use genomic data to identify a further three subgroups of 1p/19q co-deleted tumours and demonstrate an association with an aggressive phenotype.
Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmentalabnormalities
PurposeHypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI.MethodsFrom two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies.ResultsMTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI.ConclusionMTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex.