Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Auclair, Jared R"
Sort by:
soluble α-synuclein construct forms a dynamic tetramer
A heterologously expressed form of the human Parkinson disease-associated protein α-synuclein with a 10-residue N-terminal extension is shown to form a stable tetramer in the absence of lipid bilayers or micelles. Sequential NMR assignments, intramonomer nuclear Overhauser effects, and circular dichroism spectra are consistent with transient formation of α-helices in the first 100 N-terminal residues of the 140-residue α-synuclein sequence. Total phosphorus analysis indicates that phospholipids are not associated with the tetramer as isolated, and chemical cross-linking experiments confirm that the tetramer is the highest-order oligomer present at NMR sample concentrations. Image reconstruction from electron micrographs indicates that a symmetric oligomer is present, with three- or fourfold symmetry. Thermal unfolding experiments indicate that a hydrophobic core is present in the tetramer. A dynamic model for the tetramer structure is proposed, based on expected close association of the amphipathic central helices observed in the previously described micelle-associated \"hairpin\" structure of α-synuclein.
Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development
Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an i ntact protein PK/PD model ( i PK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the i PK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates. Robust bioanalytical and modeling methods are needed for covalent drug discovery. Here, the authors demonstrate a mass spectrometry (MS) assay to measure target engagement of any drug-target protein complex, a universal PK/PD model for covalent drugs, and a decision tree to guide research.
Reimagining drug regulation in the age of AI: a framework for the AI-enabled Ecosystem for Therapeutics
Artificial intelligence (AI) is increasingly integrated into drug development and regulatory decision-making; however, the regulatory landscape governing these technologies remains fragmented. While agencies such as the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) have begun issuing guidance on AI applications in human therapeutics, these frameworks differ substantially in scope, terminology, and application. This lack of alignment complicates regulatory interpretation, creates barriers to regulatory coordination, and impedes equitable access to AI-enabled therapies. In this article, we introduce the AI-enabled Ecosystem for Therapeutics (AI2ET) framework, a conceptual and policy-oriented model designed to support the federation of regulatory knowledge and promote regulatory alignment. The AI2ET shifts regulatory focus from individual AI-generated products to the broader AI-enabled systems, platforms, and processes that underpin drug development. This approach addresses current regulatory gaps in AI oversight by articulating clear definitions of the components that constitute the ecosystem, establishing risk-based decision-making pathways, and finally offering regulatory guidance to navigate the ecosystem. The article offers six key policy recommendations that include strengthening international cooperation, establishing shared regulatory definitions, and investing in regulatory capacity building. By laying down a conceptual foundation for regulatory science-based oversight of AI in therapeutic development, the AI2ET framework offers a path forward for inclusive, effective, and equitable oversight of AI in regulating human therapeutics.
Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a disorder characterized by the death of both upper and lower motor neurons and by 3- to 5-yr median survival postdiagnosis. The only US Food and Drug Administration-approved drug for the treatment of ALS, Riluzole, has at best, moderate effect on patient survival and quality of life; therefore innovative approaches are needed to combat neurodegenerative disease. Some familial forms of ALS (fALS) have been linked to mutations in the Cu/Zn superoxide dismutase (SOD1). The dominant inheritance of mutant SOD1 and lack of symptoms in knockout mice suggest a \"gain of toxic function\" as opposed to a loss of function. A prevailing hypothesis for the mechanism of the toxicity of fALS-SOD1 variants, or the gain of toxic function, involves dimer destabilization and dissociation as an early step in SOD1 aggregation. Therefore, stabilizing the SOD1 dimer, thus preventing aggregation, is a potential therapeutic strategy. Here, we report a strategy in which we chemically cross-link the SOD1 dimer using two adjacent cysteine residues on each respective monomer (Cys111). Stabilization, measured as an increase in melting temperature, of ∼20 °C and ∼45 °C was observed for two mutants, G93A and G85R, respectively. This stabilization is the largest for SOD1, and to the best of our knowledge, for any disease-related protein. In addition, chemical cross-linking conferred activity upon G85R, an otherwise inactive mutant. These results demonstrate that targeting these cysteine residues is an important new strategy for development of ALS therapies.
Regulatory Convergence for Biologics through Capacity Building and Training
Several regulatory convergence efforts for biologics are underway globally, with the goal of ensuring global standards are applied consistently across regulatory agencies. Training and capacity building will ensure convergence through fostering international collaborations between agencies and ensure harmonized standards are applied, which will bring products to market faster and cheaper.
Best practices and benchmarks for intact protein analysis for top-down mass spectrometry
One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.
A Novel Rolling Circle Amplification-Based Detection of SARS-CoV-2 with Multi-Region Padlock Hybridization
SARS-CoV-2 has remained a global health burden, primarily due to the continuous evolution of different mutant strains. These mutations present challenges to the detection of the virus, as the target genes of qPCR, the standard diagnostic method, may possess sequence alterations. In this study, we develop an isothermal one-step detection method using rolling circle amplification (RCA) for SARS-CoV-2. This novel strategy utilizes a multi-padlock (MP-RCA) approach to detect viral-RNA via a simplified procedure with the reliable detection of mutated strains over other procedures. We designed 40 padlock-based probes to target different sequences across the SARS-CoV-2 genome. We established an optimal one-step isothermal reaction protocol utilizing a fluorescent output detected via a plate reader to test a variety of padlock combinations. This method was tested on RNA samples collected from nasal swabs and validated via PCR. S-gene target failure (SGTF)-mutated strains of SARS-CoV-2 were included. We demonstrated that the sensitivity of our assay was linearly proportional to the number of padlock probes used. With the 40-padlock combination the MP-RCA assay was able to correctly detect 45 out 55 positive samples (81.8% efficiency). This included 10 samples with SGTF mutations which we were able to detect as positive with 100% efficiency. We found that the MP-RCA approach improves the sensitivity of the MP-RCA assay, and critically, allows for the detection of SARS-CoV-2 variants with SGTF. Our method offers the simplicity of the reaction and requires basic equipment compared to standard qPCR. This method provides an alternative approach to overcome the challenges of detecting SARS-CoV-2 and other rapidly mutating viruses.
Evaluation of a Pilot: Inspection Facilitation and Collaboration Using a Mixed Reality Device
The COVID-19 pandemic forced industry and national regulatory authorities (NRAs) to think about innovative ways to ensure business continuity, including Good Manufacturing Practices (GMP) inspections. Even prior to COVID-19, it was understood that GMP site inspections, especially redundant inspections, are a time and resource-intensive process for both industry and regulators in high-income countries and often prohibitive to resource-challenged countries. Thus, we investigated the use of a mixed reality device and Microsoft (MS) Teams as a platform for mixed reality (hybrid) remote inspection. This pilot involved a mock GMP inspection of a drug manufacturing facility in the United States. The mock inspection was conducted by two former USFDA (US Food and Drug Administration) investigators, facilitated by representatives from Northeastern University along with The Bill and Melinda Gates Foundation. Also participating in the inspection were inspectors from national regulatory agencies (NRAs) from the African continent, including Nigeria, South Africa, Uganda, and Zimbabwe, and representatives from the Pre-Qualification Inspection Unit at the World Health Organization (WHO). Harmonized inspectional guidance from PIC/s (GMP Guide) and WHO (TRS 823) were used as the standards for conducting the mock inspection. We found that mixed reality, used in conjunction with a collaborative text messaging system, is a viable tool to facilitate remote inspections and allows inspectors participating remotely to write their own independent inspection reports.
Shigella flexneri Adherence Factor Expression in In Vivo -Like Conditions
Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development. The Shigella species are Gram-negative, facultative intracellular pathogens that invade the colonic epithelium and cause significant diarrheal disease. Despite extensive research on the pathogen, a comprehensive understanding of how Shigella initiates contact with epithelial cells remains unknown. Shigella maintains many of the same Escherichia coli adherence gene operons; however, at least one critical gene component in each operon is currently annotated as a pseudogene in reference genomes. These annotations, coupled with a lack of structures upon microscopic analysis following growth in laboratory media, have led the field to hypothesize that Shigella is unable to produce fimbriae or other traditional adherence factors. Nevertheless, our previous analyses have demonstrated that a combination of bile salts and glucose induces both biofilm formation and adherence to colonic epithelial cells. The goal of this study was to perform transcriptomic and genetic analyses to demonstrate that adherence gene operons in Shigella flexneri strain 2457T are functional, despite the gene annotations. Our results demonstrate that at least three structural genes facilitate S. flexneri 2457T adherence for epithelial cell contact and biofilm formation. Furthermore, our results demonstrate that host factors, namely, glucose and bile salts at their physiological concentrations in the small intestine, offer key environmental stimuli required for adherence factor expression in S. flexneri . This research may have a significant impact on Shigella vaccine development and further highlights the importance of utilizing in vivo -like conditions to study bacterial pathogenesis. IMPORTANCE Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development.
The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation
Background The brown ghost knifefish ( Apteronotus leptorhynchus ) is a weakly electric teleost fish of particular interest as a versatile model system for a variety of research areas in neuroscience and biology. The comprehensive information available on the neurophysiology and neuroanatomy of this organism has enabled significant advances in such areas as the study of the neural basis of behavior, the development of adult-born neurons in the central nervous system and their involvement in the regeneration of nervous tissue, as well as brain aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. Results Here, we report the de novo assembly and annotation of the A. leptorhynchus transcriptome. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered 42,459 unique contigs containing at least a partial protein-coding sequence based on alignment to a reference set of known Actinopterygii sequences. As many as 11,847 of these contigs contained full or near-full length protein sequences, providing broad coverage of the proteome. A variety of non-coding RNA sequences were also identified and annotated, including conserved long intergenic non-coding RNA and other long non-coding RNA observed previously to be expressed in adult zebrafish ( Danio rerio ) brain, as well as a variety of miRNA, snRNA, and snoRNA. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra was greatly improved by use of the assembly compared to databases of sequences from closely related organisms. The assembly and raw reads have been deposited at DDBJ/EMBL/GenBank under the accession number GBKR00000000. Tandem mass spectrometry data is available via ProteomeXchange with identifier PXD001285. Conclusions Presented here is the first release of an annotated de novo transcriptome assembly from Apteronotus leptorhynchus , providing a broad overview of RNA expressed in central nervous system tissue. The assembly, which includes substantial coverage of a wide variety of both protein coding and non-coding transcripts, will allow the development of better tools to understand the mechanisms underlying unique characteristics of the knifefish model system, such as their tremendous regenerative capacity and negligible brain senescence.