Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
113
result(s) for
"Aviles, Pablo"
Sort by:
Quantitative determination of lurbinectedin, its unbound fraction and its metabolites in human plasma utilizing ultra-performance LC–MS/MS
2023
Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods to quantify total lurbinectedin, its plasma protein binding to derive the unbound fraction and its main metabolites 1',3'-dihydroxy-lurbinectedin (M4) and N-desmethyl-lurbinectedin (M6) in human plasma, were developed and validated.
For lurbinectedin, sample extraction was performed using supported liquid extraction. For metabolites, liquid-liquid extraction with stable isotope-labeled analogue internal standards was used. Plasma protein binding was evaluated using rapid equilibrium dialysis. In vitro investigations at different plasma protein concentrations were carried out to estimate dissociation rate constants to albumin and alpha-1-acid glycoprotein (AAG).
Calibration curves displayed good linearity over 0.1 to 50 ng/mL for lurbinectedin and 0.5 to 20 ng/mL for the metabolites. Methods were validated in accordance with established guidance. The inter-day precision and accuracy ranged from 5.1% to 10.7%, and from -5% to 6% (lurbinectedin in plasma); from 3.1% to 6.6%, and from 4% to 6% (lurbinectedin in plasma:PBS); from 4.5% to 12.9%, and from 4% to 9% (M4); and from 7.5% to 10.5%, and from 6% to 12% (M6). All methods displayed good linearity (r2 >0.99). Recovery was evaluated for lurbinectedin in plasma:PBS (66.4% to 86.6%), M4 (7.82% to 13.4%) and M6 (22.2% to 34.3%). The method for lurbinectedin in plasma has been applied in most clinical studies, while the plasma:PBS and metabolites methods were used to evaluate the impact of special conditions on lurbinectedin PK. Lurbinectedin plasma protein binding was 99.6% and highly affected by AAG concentration.
These UPLC-MS/MS methods enable the rapid and sensitive quantification of lurbinectedin and its main metabolites in clinical samples.
Journal Article
Plocabulin, a Novel Tubulin Inhibitor, Has Potent Antitumour Activity in Patient-Derived Xenograft Models of Soft Tissue Sarcoma
2022
A clinically relevant subset of patients with soft tissue sarcoma presents with either locally advanced or upfront metastatic disease, or will develop distant metastases over time, despite successful treatment of their primary tumour. The currently available systemic agents to treat such advanced cases only provide modest disease control and are not active in all histological subtypes. Thus, there is an unmet need for novel and more efficacious agents to improve the outcome of this rare disease. In the current preclinical in vivo study, we evaluated plocabulin, a novel tubulin inhibitor, in five distinct histological subtypes of soft tissue sarcoma: dedifferentiated liposarcoma, leiomyosarcoma, undifferentiated sarcoma, intimal sarcoma and CIC-rearranged sarcoma. The efficacy was tested in seven patient-derived xenograft models, which were generated by the engraftment of tumour fragments from patients directly into nude mice. The treatment lasted 22 days, and the efficacy of the drug was assessed and compared to the doxorubicin and vehicle groups by volumetric analysis, histopathology and immunohistochemistry. We observed tumour volume control in all the tested histological subtypes. Additionally, in three sarcoma subtypes, extensive central necrosis, associated with significant tumour regression, was seen. This histological response is explained by the drug’s vascular-disruptive properties, reflected by a decreased total vascular area in the xenografts. Our results demonstrate the in vivo efficacy of plocabulin in the preclinical models of soft tissue sarcoma and corroborate the findings of our previous study, which demonstrated similar vascular-disruptive effects in gastrointestinal stromal tumours—another subtype of soft tissue sarcoma. Our data provide a convincing rationale for further clinical exploration of plocabulin in soft tissue sarcomas.
Journal Article
Hybrid CPU–GPU implementation of the transformed spatial domain channel estimation algorithm for mmWave MIMO systems
by
Aviles, Pablo M.
,
Roger, Sandra
,
Lloria, Diego
in
5G mobile communication
,
Algorithms
,
Antennas
2023
Hybrid platforms combining multicore central processing units (CPU) with many-core hardware accelerators such as graphic processing units (GPU) can be smartly exploited to provide efficient parallel implementations of wireless communication algorithms for Fifth Generation (5G) and beyond systems. Massive multiple-input multiple-output (MIMO) systems are a key element of the 5G standard, involving several tens or hundreds of antenna elements for communication. Such a high number of antennas has a direct impact on the computational complexity of some MIMO signal processing algorithms. In this work, we focus on the channel estimation stage. In particular, we develop a parallel implementation of a recently proposed MIMO channel estimation algorithm. Its performance in terms of execution time is evaluated both in a multicore CPU and in a GPU. The results show that some computation blocks of the algorithm are more suitable for multicore implementation, whereas other parts are more efficiently implemented in the GPU, indicating that a hybrid CPU–GPU implementation would achieve the best performance in practical applications based on the tested platform.
Journal Article
Plocabulin, a novel tubulin-binding agent, inhibits angiogenesis by modulation of microtubule dynamics in endothelial cells
by
Martin, Maud
,
Guillen-Navarro, María José
,
Martínez-Diez, Marta
in
Angiogenesis inhibitors
,
Biomedical and Life Sciences
,
Biomedicine
2018
Background
Vascular supply of tumors is one of the main targets for cancer therapy. Here, we investigated if plocabulin (PM060184), a novel marine-derived microtubule-binding agent, presents antiangiogenic and vascular-disrupting activities.
Methods
The effects of plocabulin on microtubule network and dynamics were studied on HUVEC endothelial cells. We have also studied its effects on capillary tube structures formation or destabilization in three-dimensional collagen matrices. In vivo experiments were performed on different tumor cell lines.
Results
In vitro studies show that, at picomolar concentrations, plocabulin inhibits microtubule dynamics in endothelial cells. This subsequently disturbs the microtubule network inducing changes in endothelial cell morphology and causing the collapse of angiogenic vessels, or the suppression of the angiogenic process by inhibiting the migration and invasion abilities of endothelial cells. This rapid collapse of the endothelial tubular network in vitro occurs in a concentration-dependent manner and is observed at concentrations lower than that affecting cell survival. The in vitro findings were confirmed in tumor xenografts where plocabulin treatment induced a large reduction in vascular volume and induction of extensive necrosis in tumors, consistent with antivascular effects.
Conclusions
Altogether, these data suggest that an antivascular mechanism is contributing to the antitumor activities of plocabulin.
Journal Article
Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models
by
Allavena, Paola
,
Céspedes, María Virtudes
,
Galmarini, Carlos María
in
Adenocarcinoma - drug therapy
,
Adenocarcinoma - pathology
,
Animals
2016
We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop 'molecularly targeted' combination strategies.
Journal Article
CD13 as a new tumor target for antibody-drug conjugates: validation with the conjugate MI130110
by
Somovilla-Crespo, Beatriz
,
Adrados, Magdalena
,
Guillén, María José
in
Analysis
,
Angiogenesis
,
Animal models
2020
Background
In the search for novel antibody-drug conjugates (ADCs) with therapeutic potential, it is imperative to identify novel targets to direct the antibody moiety. CD13 seems an attractive ADC target as it shows a differential pattern of expression in a variety of tumors and cell lines and it is internalized upon engagement with a suitable monoclonal antibody. PM050489 is a marine cytotoxic compound tightly binding tubulin and impairing microtubule dynamics which is currently undergoing clinical trials for solid tumors.
Methods
Anti-CD13 monoclonal antibody (mAb) TEA1/8 has been used to prepare a novel ADC, MI130110, by conjugation to the marine compound PM050489. In vitro and in vivo experiments have been carried out to demonstrate the activity and specificity of MI130110.
Results
CD13 is readily internalized upon TEA1/8 mAb binding, and the conjugation with PM050489 did not have any effect on the binding or the internalization of the antibody. MI130110 showed remarkable activity and selectivity in vitro on CD13-expressing tumor cells causing the same effects than those described for PM050489, including cell cycle arrest at G2, mitosis with disarrayed and often multipolar spindles consistent with an arrest at metaphase, and induction of cell death. In contrast, none of these toxic effects were observed in CD13-null cell lines incubated with MI130110. Furthermore, in vivo studies showed that MI130110 exhibited excellent antitumor activity in a CD13-positive fibrosarcoma xenograft murine model, with total remissions in a significant number of the treated animals. Mitotic catastrophes, typical of the payload mechanism of action, were also observed in the tumor cells isolated from mice treated with MI130110. In contrast, MI130110 failed to show any activity in a xenograft mouse model of myeloma cells not expressing CD13, thereby corroborating the selectivity of the ADC to its target and its stability in circulation.
Conclusion
Our results show that MI130110 ADC combines the antitumor potential of the PM050489 payload with the selectivity of the TEA1/8 monoclonal anti-CD13 antibody and confirm the correct intracellular processing of the ADC. These results demonstrate the suitability of CD13 as a novel ADC target and the effectiveness of MI130110 as a promising antitumor therapeutic agent.
Journal Article
Nano-Encapsulation of Plitidepsin: In Vivo Pharmacokinetics, Biodistribution, and Efficacy in a Renal Xenograft Tumor Model
by
Oliveira, Hugo
,
Aviles, Pablo
,
Lecommandoux, Sébastien
in
Animals
,
Biochemistry
,
Biomedical and Life Sciences
2014
Purpose
Plitidepsin is an antineoplasic currently in clinical evaluation in a phase III trial in multiple myeloma (ADMYRE). Presently, the hydrophobic drug plitidepsin is formulated using Cremophor®, an adjuvant associated with unwanted hypersensitivity reactions. In search of alternatives, we developed and tested two nanoparticle-based formulations of plitidepsin, aiming to modify/improve drug biodistribution and efficacy.
Methods
Using nanoprecipitation, plitidepsin was loaded in polymer nanoparticles made of amphiphilic block copolymers (i.e. PEG-
b
-PBLG or PTMC-
b
-PGA). The pharmacokinetics, biodistribution and therapeutic efficacy was assessed using a xenograft renal cancer mouse model (MRI-H-121 xenograft) upon administration of the different plitidepsin formulations at maximum tolerated multiple doses (0.20 and 0.25 mg/kg for Cremophor® and copolymer formulations, respectively).
Results
High plitidepsin loading efficiencies were obtained for both copolymer formulations. Considering pharmacokinetics, PEG-
b
-PBLG formulation showed lower plasma clearance, associated with higher AUC and Cmax than Cremophor® or PTMC-
b
-PGA formulations. Additionally, the PEG-
b
-PBLG formulation presented lower liver and kidney accumulation compared with the other two formulations, associated with an equivalent tumor distribution. Regarding the anticancer activity, all formulations elicited similar efficacy profiles, as compared to the Cremophor® formulation, successfully reducing tumor growth rate.
Conclusions
Although the nanoparticle formulations present equivalent anticancer activity, compared to the Cremophor® formulation, they show improved biodistribution profiles, presenting novel tools for future plitidepsin-based therapies.
Journal Article
Pan-inhibition of super-enhancer-driven oncogenic transcription by next-generation synthetic ecteinascidins yields potent anti-cancer activity
2025
The plasticity of cancer cells facilitates their ability to adopt heterogeneous differentiation states, posing a significant challenge to therapeutic interventions. Specific gene expression programs, driven in part by super-enhancers (SEs), underlie cancer cell states. Here we successfully inhibit SE-driven transcription in phenotypically distinct metastatic melanoma cells using next-generation synthetic ecteinascidins. Through functional genomic methodologies, we demonstrate that these compounds inhibit the expression of genes encoding lineage-specific or ubiquitous transcription factors/coactivators by selectively targeting the CpG-rich sequences within their promoters and/or enhancers. This prevents the formation of transcription factor/coactivator condensates necessary for SE-dependent gene expression. Consequently, these compounds exhibit cytotoxic activity across distinct subpopulations of metastatic melanoma cells and inhibit tumor proliferation, including those resistant to current therapies. These findings extend to other cancers, like small cell lung cancer, recently approved for ecteinascidin-based treatment. Overall, our study provides preclinical proof that pan-inhibition of SE-dependent genes with synthetic ecteinascidins is a promising therapeutic approach for tumors with heterogeneous transcriptional landscapes.
Super-enhancers (SEs) drive specific gene expression programmes underlying different cancer cell states offering opportunities for therapeutic targeting. Here, the authors suggest targeting SE-dependent genes with synthetic ecteinascidins in tumors with heterogeneous transcriptional landscapes.
Journal Article
Long-term survival of mechanically ventilated patients with severe COVID-19: an observational cohort study
by
Ballesteros, Daniel
,
Avilés, Juan Pablo
,
Bardi Tommaso
in
Clinical outcomes
,
Cohort analysis
,
Coronaviruses
2021
BackgroundInformation is lacking regarding long-term survival and predictive factors for mortality in patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19) and undergoing invasive mechanical ventilation. We aimed to estimate 180-day mortality of patients with COVID-19 requiring invasive ventilation, and to develop a predictive model for long-term mortality.MethodsRetrospective, multicentre, national cohort study between March 8 and April 30, 2020 in 16 intensive care units (ICU) in Spain. Participants were consecutive adults who received invasive mechanical ventilation for COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection detected in positive testing of a nasopharyngeal sample and confirmed by real time reverse-transcriptase polymerase chain reaction (rt-PCR). The primary outcomes was 180-day survival after hospital admission. Secondary outcomes were length of ICU and hospital stay, and ICU and in-hospital mortality. A predictive model was developed to estimate the probability of 180-day mortality.Results868 patients were included (median age, 64 years [interquartile range [IQR], 56–71 years]; 72% male). Severity at ICU admission, estimated by SAPS3, was 56 points [IQR 50–63]. Prior to intubation, 26% received some type of noninvasive respiratory support. The unadjusted overall 180-day survival rates was 59% (95% CI 56–62%). The predictive factors measured during ICU stay, and associated with 180-day mortality were: age [Odds Ratio [OR] per 1-year increase 1.051, 95% CI 1.033–1.068)), SAPS3 (OR per 1-point increase 1.027, 95% CI 1.011–1.044), diabetes (OR 1.546, 95% CI 1.085–2.204), neutrophils to lymphocytes ratio (OR per 1-unit increase 1.008, 95% CI 1.001–1.016), failed attempt of noninvasive positive pressure ventilation prior to orotracheal intubation (OR 1.878 (95% CI 1.124–3.140), use of selective digestive decontamination strategy during ICU stay (OR 0.590 (95% CI 0.358–0.972) and administration of low dosage of corticosteroids (methylprednisolone 1 mg/kg) (OR 2.042 (95% CI 1.205–3.460).ConclusionThe long-term survival of mechanically ventilated patients with severe COVID-19 reaches more than 50% and may help to provide individualized risk stratification and potential treatments.Trial registration: ClinicalTrials.gov Identifier: NCT04379258. Registered 10 April 2020 (retrospectively registered)
Journal Article
Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis
by
Serelde, Beatriz G
,
Moneo, Victoria
,
Blanco-Aparicio, Carmen
in
Apoptosis
,
Biomarkers
,
Biomarkers, Pharmacological
2014
Background
Zalypsis® is a marine compound in phase II clinical trials for multiple myeloma, cervical and endometrial cancer, and Ewing’s sarcoma. However, the determinants of the response to Zalypsis are not well known. The identification of biomarkers for Zalypsis activity would also contribute to broaden the spectrum of tumors by selecting those patients more likely to respond to this therapy.
Methods
Using
in vitro
drug sensitivity data coupled with a set of molecular data from a panel of sarcoma cell lines, we developed molecular signatures that predict sensitivity to Zalypsis
.
We verified these results in culture and
in vivo
xenograft studies.
Results
Zalypsis resistance was dependent on the expression levels of PDGFRα or constitutive phosphorylation of c-Kit, indicating that the activation of tyrosine kinase receptors (TKRs) may determine resistance to Zalypsis. To validate our observation, we measured the levels of total and active (phosphorylated) forms of the RTKs PDGFRα/β, c-Kit, and EGFR in a new panel of diverse solid tumor cell lines and found that the IC50 to the drug correlated with RTK activation in this new panel. We further tested our predictions about Zalypsis determinants for response
in vivo
in xenograft models. All cells lines expressing low levels of RTK signaling were sensitive to Zalypsis
in vivo
, whereas all cell lines except two with high levels of RTK signaling were resistant to the drug.
Conclusions
RTK activation might provide important signals to overcome the cytotoxicity of Zalypsis and should be taken into consideration in current and future clinical trials.
Journal Article