Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Avola, Emanuela"
Sort by:
Specific Learning Disorders: Variation Analysis of 15 Candidate Genes in 9 Multiplex Families
2023
Background and Objectives: Specific Learning Disorder (SLD) is a complex neurobiological disorder characterized by a persistent difficult in reading (dyslexia), written expression (dysgraphia), and mathematics (dyscalculia). The hereditary and genetic component is one of the underlying causes of SLD, but the relationship between genes and the environment should be considered. Several genetic studies were performed in different populations to identify causative genes. Materials and Methods: Here, we show the analysis of 9 multiplex families with at least 2 individuals diagnosed with SLD per family, with a total of 37 persons, 21 of whom are young subjects with SLD, by means of Next-Generation Sequencing (NGS) to identify possible causative mutations in a panel of 15 candidate genes: CCPG1, CYP19A1, DCDC2, DGKI, DIP2A, DYM, GCFC2, KIAA0319, MC5R, MRPL19, NEDD4L, PCNT, PRMT2, ROBO1, and S100B. Results: We detected, in eight families out nine, SNP variants in the DGKI, DIP2A, KIAA0319, and PCNT genes, even if in silico analysis did not show any causative effect on this behavioral condition. In all cases, the mutation was transmitted by one of the two parents, thus excluding the case of de novo mutation. Moreover, the parent carrying the allelic variant transmitted to the children, in six out of seven families, reports language difficulties. Conclusions: Although the present results cannot be considered conclusive due to the limited sample size, the identification of genetic variants in the above genes can provide input for further research on the same, as well as on other genes/mutations, to better understand the genetic basis of this disorder, and from this perspective, to better understand also the neuropsychological and social aspects connected to this disorder, which affects an increasing number of young people.
Journal Article
Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases
2017
Evan Eichler and colleagues use single-molecule molecular-inversion probes to sequence the coding and splicing regions of 208 candidate genes in more than 11,730 individuals with neurodevelopmental disorders. They report 91 genes with an excess of
de novo
or private disruptive mutations, identify 25 genes showing a bias for autism versus intellectual disability, and highlight a network associated with high-functioning autism.
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of
de novo
mutations or private disruptive mutations in 5.7% of cases.
Drosophila
functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for
NAA15
,
KMT5B
, and
ASH1L
highlighted new syndromic and nonsyndromic forms of disease.
Journal Article
The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant
by
Ockeloen, Charlotte W
,
Kukolich, Mary K
,
Flórez, Jesús
in
Abnormalities, Multiple - diagnosis
,
Abnormalities, Multiple - genetics
,
Adolescent
2016
The Koolen-de Vries syndrome (KdVS; OMIM #610443), also known as the 17q21.31 microdeletion syndrome, is a clinically heterogeneous disorder characterised by (neonatal) hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Expressive language development is particularly impaired compared with receptive language or motor skills. Other frequently reported features include social and friendly behaviour, epilepsy, musculoskeletal anomalies, congenital heart defects, urogenital malformations, and ectodermal anomalies. The syndrome is caused by a truncating variant in the KAT8 regulatory NSL complex unit 1 (KANSL1) gene or by a 17q21.31 microdeletion encompassing KANSL1. Herein we describe a novel cohort of 45 individuals with KdVS of whom 33 have a 17q21.31 microdeletion and 12 a single-nucleotide variant (SNV) in KANSL1 (19 males, 26 females; age range 7 months to 50 years). We provide guidance about the potential pitfalls in the laboratory testing and emphasise the challenges of KANSL1 variant calling and DNA copy number analysis in the complex 17q21.31 region. Moreover, we present detailed phenotypic information, including neuropsychological features, that contribute to the broad phenotypic spectrum of the syndrome. Comparison of the phenotype of both the microdeletion and SNV patients does not show differences of clinical importance, stressing that haploinsufficiency of KANSL1 is sufficient to cause the full KdVS phenotype.
Journal Article
Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains
2017
This study characterizes the properties of disease-causing mutations that produce sporadic amino acid replacements in proteins of people with autism and developmental delay. The mutations tend to cluster and reoccur at specific regions important to protein function, highlighting for future follow-up ∼200 candidate genes, many involved in neuronal signaling.
Although
de novo
missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of
de novo
missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with
GRIA1
mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of
de novo
mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.
Journal Article
Oral-facial-digital syndrome type VI: is C5orf42 really the major gene?
by
Miccinilli, Elide
,
D’Arrigo, Stefano
,
Romani, Marta
in
Abnormalities, Multiple
,
Amino acids
,
Biomedical and Life Sciences
2015
Oral-facial-digital type VI syndrome (OFDVI) is a rare phenotype of Joubert syndrome (JS). Recently,
C5orf42
was suggested as the major OFDVI gene, being mutated in 9 of 11 families (82 %). We sequenced
C5orf42
in 313 JS probands and identified mutations in 28 (8.9 %), most with a phenotype of pure JS. Only 2 out of 17 OFDVI patients (11.7 %) were mutated. A comparison of mutated vs. non-mutated OFDVI patients showed that preaxial and mesoaxial polydactyly, hypothalamic hamartoma and other congenital defects may predict
C5orf42
mutations, while tongue hamartomas are more common in negative patients.
Journal Article
Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains
2017
Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.
Journal Article