Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
92 result(s) for "Ayodeji, Oluwafemi"
Sort by:
Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review
Urbanization, emergence, and prominence of diseases and ailments have led to conscious and deliberate consumption of health beneficial foods. Whole grain (WG) cereals are one type of food with an array of nutritionally important and healthy constituents, including carotenoids, inulin, β-glucan, lignans, vitamin E-related compounds, tocols, phytosterols, and phenolic compounds, which are beneficial for human consumption. They not only provide nutrition, but also confer health promoting effects in food, such as anti-carcinogenic, anti-microbial, and antioxidant properties. Fermentation is a viable processing technique to transform whole grains in edible foods since it is an affordable, less complicated technique, which not only transforms whole grains but also increases nutrient bioavailability and positively alters the levels of health-promoting components (particularly antioxidants) in derived whole grain products. This review addresses the impact of fermentation on phenolic compounds and antioxidant activities with most available studies indicating an increase in these health beneficial constituents. Such increases are mostly due to breakdown of the cereal cell wall and subsequent activities of enzymes that lead to the liberation of bound phenolic compounds, which increase antioxidant activities. In addition to the improvement of these valuable constituents, increasing the consumption of fermented whole grain cereals would be vital for the world’s ever-growing population. Concerted efforts and adequate strategic synergy between concerned stakeholders (researchers, food industry, and government/policy makers) are still required in this regard to encourage consumption and dispel negative presumptions about whole grain foods.
Complementary nutritional and health promoting constituents in germinated and probiotic fermented flours from cowpea, sorghum and orange fleshed sweet potato
Germination and fermentation are age-long food processes that beneficially improve food composition. Biological modulation by germination and probiotic fermentation of cowpea, sorghum, and orange-fleshed sweet potato (OFSP) and subsequent effects on the physicochemical (pH and total titratable acidity), nutritional, antinutritional factors and health-promoting constituents/properties (insoluble dietary fibres, total flavonoid and phenolic contents (TFC and TPC) and antioxidant capacity) of the derived flours were investigated in this study. The quantification of targeted compounds (organic acids and phenolic compounds) on an ultra-high performance liquid chromatography (UHPLC) system was also done. The whole cowpea and sorghum were germinated at 35 °C for 48 h. On the other hand, the milled whole grains and beans and OFSP were fermented using probiotic mesophilic culture at 35 °C for 48 h. Among the resultant bioprocessed flours, fermented sorghum and sweet potato (FSF and FSP) showed mild acidity, increased TPC, and improved ferric ion-reducing antioxidant power. While FSF had better slowly digestible and resistant starches and the lowest oxalate content, FSP indicated better hemicellulose, lowest fat, highest luteolin, caffeic and vanillic acids. Germinated cowpea flour exhibited reduced tannin, better lactic acid, the highest crude fibre, cellulose, lignin, protein, fumaric, l -ascorbic, trans-ferulic and sinapic acids. The comparable and complementary variations suggest the considerable influence of the substrate types, followed by the specific processing-based hydrolysis and biochemical transitions. Thus, compositing the bioprocessed flours based on the unique constituent features for developing functional products from climate-smart edibles may partly be the driver to ameliorating linked risk factors of cardiometabolic diseases.
Reduction of Mycotoxins during Fermentation of Whole Grain Sorghum to Whole Grain Ting (a Southern African Food)
Mycotoxins are fungal secondary metabolites that pose health risks to exposed individuals, requiring necessary measures to reduce them. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), mycotoxins were quantified in whole grain sorghum and ting subsequently derived from two sorghum varieties (high and low tannin). The whole grain (WG) ting samples were obtained by fermenting sorghum with Lactobacillus fermentum strains (FUA 3165 and FUA 3321). Naturally (spontaneously) fermented WG-ting under the same conditions were equally analysed. Among the mycotoxins investigated, fumonisin B1 (FB1), B2 (FB2), B3 (FB3), T-2 toxin (T-2), zearalenone (ZEA), alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL) were detected in sorghum. Results obtained showed that mycotoxin concentrations significantly (p ≤ 0.05) reduced after fermentation. In particular, L. fermentum FUA 3321 showed the capability to significantly (p ≤ 0.05) reduce all the mycotoxins by 98% for FB1, 84% for T-2 and up to 82% for α-ZOL, compared to raw low tannin sorghum. Fermenting with the L. fermentum strains showed potential to effectively reduce mycotoxin contamination in whole grain ting. Thus, we recommended L. fermentum FUA 3321 in particular to be used as a potential starter culture in sorghum fermentation.
Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability
Fermented food products, especially those derived from cereals and legumes are important contributors to diet diversity globally. These food items are vital to food security and significantly contribute to nutrition. Fermentation is a process that desirably modifies food constituents by increasing the palatability, organoleptic properties, bioavailability and alters nutritional constituents. This review focuses on deciphering possible mechanisms involved in the modification of nutritional constituents as well as nutrient bioavailability during the fermentation of cereals and legumes, especially those commonly consumed in developing countries. Although modifications in these constituents are dependent on inherent and available nutrients in the starting raw material, it was generally observed that fermentation increased these nutritive qualities (protein, amino acids, vitamins, fats, fatty acids, etc.) in cereals and legumes, while in a few instances, a reduction in these constituents was noted. A general reduction trend in antinutritional factors was also observed with a corresponding increase in the nutrient bioavailability and bioaccessibility. Notable mechanisms of modification include transamination or the synthesis of new compounds during the fermentation process, use of nutrients as energy sources, as well as the metabolic activity of microorganisms leading to a degradation or increase in the level of some constituents. A number of fermented products are yet to be studied and fully understood. Further research into these food products using both conventional and modern techniques are still required to provide insights into these important food groups, as well as for an overall improved food quality, enhanced nutrition and health, as well as other associated socioeconomic benefits.
3D food printing improves color profile and structural properties of the derived novel whole-grain sourdough and malt biscuits
Presentation of foods is essential to promote the acceptance of diversified and novel products. This study examined the color profile, browning index (BI), and structural properties of 3D-printed and traditional biscuits from whole-grain (WG) sourdough and germinated flours. The processed flours and composite/multigrain flours comprising cowpea sourdough (CS) and quinoa malt (QM) were used to prepare the snacks, and their structural characteristics were determined. Compared with the traditional biscuits, the 3D-printed biscuits showed considerable distinction in terms of consistent structural design and color intensities. The in-barrel shearing effect on dough biopolymers, automated printing of replicated dough strands in layers, and expansion during baking might have caused the biscuits’ structural differences. The composite biscuit formulations had a proportional share of CS and QM characteristics. The 80% CS and 20% QM printed biscuit had a low redness and BI, increased cell volume, average cell area, and total concavity. The 60% CS and 40% QM printed snack showed improved lightness and yellowness, increased average cell elongation, and less hardness. The 3D-printed composite biscuits may be recommended based on their unique structural characteristics. Such attributes can enhance the acceptability of printed foods and reinvent locally prepared meals as trendy, sustainable, and functional foods.
Phytochemical Distribution in 3D‐Printed Biscuits From Bioprocessed Wholegrain and Multigrain Food Inks
This study investigates phytochemical variations in three‐dimensional (3D) printed biscuits prepared using raw and bioprocessed wholegrain/multigrain food inks. The flour‐based food inks were raw wholegrains (i) 100% cowpea, (ii) 100% quinoa; bioprocessed wholegrains (iii) 100% fermented cowpea (FC), (iv) 100% malted quinoa (MQ), as well as multigrain containing composite bioprocessed blends (v) 80% FC and 20% MQ and (vi) 60% FC and 40% MQ. Phytochemicals were profiled using an ultra‐performance liquid chromatography coupled to a quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS), revealing major classes: fatty acyls (17%), flavonoids (17%), prenol lipids (14%), and amino acids and one derivative (10%). The 3D‐printed biscuits containing bioprocessed inks (FC or MQ) exhibited higher phytochemical concentrations compared to raw inks, with distinct compositional trends. Multigrain biscuits showed synergistic enrichment of fatty acyls, prenol lipids, flavonoid and flavonoid glycosides, and amino acids, alongside reduced purine nucleosides. Bioprocessed multigrain inks enhance phytochemical diversity in 3D‐printed biscuits, suggesting better nutritional and health‐promoting composition. Reduction of purine nucleosides implies that strategic blending of bioprocessed inks might help moderate dietary purine levels. Such bioprocessed multigrain inks are integral to developing functional 3D‐printed foods with balanced nutrient and metabolite profiles.
Application of a generative adversarial network for multi-featured fermentation data synthesis and artificial neural network (ANN) modeling of bitter gourd–grape beverage production
Artificial neural networks (ANNs) have in recent times found increasing application in predictive modelling of various food processing operations including fermentation, as they have the ability to learn nonlinear complex relationships in high dimensional datasets, which might otherwise be outside the scope of conventional regression models. Nonetheless, a major limiting factor of ANNs is that they require quite a large amount of training data for better performance. Obtaining such an amount of data from biological processes is usually difficult for many reasons. To resolve this problem, methods are proposed to inflate existing data by artificially synthesizing additional valid data samples. In this paper, we present a generative adversarial network (GAN) able to synthesize an infinite amount of realistic multi-dimensional regression data from limited experimental data (n = 20). Rigorous testing showed that the synthesized data (n = 200) significantly conserved the variances and distribution patterns of the real data. Further, the synthetic data was used to generalize a deep neural network. The model trained on the artificial data showed a lower loss (2.029 ± 0.124) and converged to a solution faster than its counterpart trained on real data (2.1614 ± 0.117).
Adaptive Design for Phase II/III Platform Trial of Lassa Fever Therapeutics
The current recommendation for treating Lassa fever with ribavirin is supported only by weak evidence. Given the persistent effects in areas with endemic transmission and epidemic potential, there is an urgent need to reassess ribavirin and investigate other potential therapeutic candidates; however, a robust clinical trial method adapted to Lassa fever epidemiology has not yet been established. We propose an adaptive phase II/III multicenter randomized controlled platform trial that uses a superiority framework with an equal allocation ratio and accounts for challenges selecting the primary end point and estimating the target sample size by using an interim analysis.
Fermented Edible Insects for Promoting Food Security in Africa
Efforts to attain sustainable nutritional diets in sub-Saharan Africa (SSA) are still below par. The continent is envisaged to face more impending food crises. This review presents an overview of common edible insects in Africa, their nutritional composition, health benefits and utilization in connection with fermentation to enrich the inherent composition of insect-based products and offer foods related to existing and generally preferred culinary practice. Attempts to explore fermentation treatments involving insects showed fermentation affected secondary metabolites to induce antimicrobial, nutritional and therapeutic properties. Available value-added fermented edible insect products like paste, powder, sauces, and insect containing fermented foods have been developed with potential for more. Novel fermented edible insect-based products could effectively fit in the continent’s food mix and therefore mitigate ongoing food insecurity, as well as to balance nutrition with health risk concerns limiting edible insects’ product acceptability in SSA.
A modeling method for the development of a bioprocess to optimally produce umqombothi (a South African traditional beer)
Bioprocess development for umqombothi (a South African traditional beer) as with other traditional beer products can be complex. As a result, beverage bioprocess development is shifting towards new systematic protocols of experimentation. Traditional optimization methods such as response surface methodology (RSM) require further comparison with a relevant machine learning system. Artificial neural network (ANN) is an effective non-linear multivariate tool in bioprocessing, with enormous generalization, prediction, and validation capabilities. ANN bioprocess development and optimization of umqombothi were done using RSM and ANN. The optimum condition values were 1.1 h, 29.3 °C, and 25.9 h for cooking time, fermentation temperature, and fermentation time, respectively. RSM was an effective tool for the optimization of umqombothi ’s bioprocessing parameters shown by the coefficient of determination (R 2 ) closer to 1. RSM significant parameters: alcohol content, total soluble solids (TSS), and pH had R 2 values of 0.94, 0.93, and 0.99 respectively while the constructed ANN significant parameters: alcohol content, TSS, and viscosity had R 2 values of 0.96, 0.96, and 0.92 respectively. The correlation between experimental and predicted values suggested that both RSM and ANN were suitable bioprocess development and optimization tools.