Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Azmoun, B"
Sort by:
Measurement of charged hadron multiplicity in Au+Au collisions at s NN $$ \\sqrt{{\\textrm{s}}_{\\textrm{NN}}} $$ = 200 GeV with the sPHENIX detector
Abstract The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of s NN $$ \\sqrt{{\\textrm{s}}_{\\textrm{NN}}} $$ = 200 GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover |η| < 1.1 across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
The sPHENIX Micromegas Outer Tracker
The sPHENIX Time Projection Chamber Outer Tracker (TPOT) is a Micromegas based detector. It is a part of the sPHENIX experiment that aims to facilitate the calibration of the Time Projection Chamber, in particular the correction of the time-averaged and beam-induced distortions of the electron drift. This paper describes the detector mission, setup, construction, installation, commissioning and performance during the first year of sPHENIX data taking.
A Comparative Study of Straight-Strip and Zigzag-Interleaved Anode Patterns for MPGD Readouts
Due to their simplicity and versatility of design, straight strip or rectangular pad anode structures are frequently employed with micro-pattern gas detectors to reconstruct high precision space points for various tracking applications. The particle impact point is typically determined by interpolating the charge collected by several neighboring pads. However, to effectively extract the inherent positional information, the lateral spacing of the straight pads must be significantly smaller than the extent of the charge cloud. In contrast, highly interleaved anode patterns, such as zigzags, can adequately sample the charge with a pitch comparable to the size of the charge cloud or even larger. This has the considerable advantage of providing the same performance while requiring far fewer instrumented channels. Additionally, the geometric parameters defining such zigzag structures may be tuned to provide a uniform detector response without the need for so-called pad response functions, while simultaneously maintaining excellent position resolution. We have measured the position resolution of a variety of zigzag shaped anode patterns optimized for various MPGDs, including GEM, Micromegas, and micro-RWELL and compared this performance to the same detectors equipped with straight pads of varying pitch. We report on the performance results of each readout structure, evaluated under identical conditions in a test beam.
Results from a Prototype Combination TPC Cherenkov Detector with GEM Readout
A combination Time Projection Chamber-Cherenkov prototype detector has been developed as part of the Detector R&D Program for a future Electron Ion Collider. The prototype was tested at the Fermilab test beam facility to provide a proof of principle to demonstrate that the detector is able to measure particle tracks and provide particle identification information within a common detector volume. The TPC portion consists of a 10x10x10cm3 field cage, which delivers charge from tracks to a 10x10cm2 quadruple GEM readout. Tracks are reconstructed by interpolating the hit position of clusters on an array of 2x10mm2 zigzag pads The Cherenkov component consists of a 10x10cm2 readout plane segmented into 3x3 square pads, also coupled to a quadruple GEM. As tracks pass though the drift volume of the TPC, the generated Cherenkov light is able to escape through sparsely arranged wires making up one side of the field cage, facing the CsI photocathode of the Cherenkov detector. The Cherenkov detector is thus operated in a windowless, proximity focused configuration for high efficiency. Pure CF4 is used as the working gas for both detector components, mainly due to its transparency into the deep UV, as well as its high N0. Results from the beam test, as well as results on its particle id capabilities will be discussed.
Design Studies for a TPC Readout Plane Using Zigzag Patterns with Multistage GEM Detectors
A new Time Projection Chamber (TPC) is currently under development for the sPHENIX experiment at RHIC. The TPC will be read out using multistage GEM detectors on each end and will be divided into approximately 40 pad layers in radius. Each pad layer is required to provide a spatial resolution of ~250 microns, which must be achieved with a minimal channel count in order to minimize the overall cost of the detector. The current proposal is to make the pads into a zigzag shape in order to enhance charge sharing among neighboring pads. This will allow for the possibility to interpolate the hit position to high precision, resulting in a position resolution many times better than the 2mm pitch of the readout pads. This paper discusses various simulation studies that were carried out to optimize the size and shape of the zigzag pads for the readout board for the TPC, along with the technical challenges in fabricating it. It also describes the performance of the first prototype readout board obtained from measurements carried out in the laboratory using a highly collimated X-ray source.
A Study of a Mini-drift GEM Tracking Detector
A GEM tracking detector with an extended drift region has been studied as part of an effort to develop new tracking detectors for future experiments at RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB. The detector consists of a triple GEM stack with a small drift region that was operated in a mini TPC type configuration. Both the position and arrival time of the charge deposited in the drift region were measured on the readout plane which allowed the reconstruction of a short vector for the track traversing the chamber. The resulting position and angle information from the vector could then be used to improve the position resolution of the detector for larger angle tracks, which deteriorates rapidly with increasing angle for conventional GEM tracking detectors using only charge centroid information. Two types of readout planes were studied. One was a COMPASS style readout plane with 400 micron pitch XY strips and the other consisted of 2x10mm2 chevron pads. The detector was studied in test beams at Fermilab and CERN, along with additional measurements in the lab, in order to determine its position and angular resolution for incident track angles up to 45 degrees. Several algorithms were studied for reconstructing the vector using the position and timing information in order to optimize the position and angular resolution of the detector for the different readout planes. Applications for large angle tracking detectors at RHIC and EIC are also discussed.
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.
Development of Tracking Detectors with industrially produced GEM Foils
The planned tracking upgrade of the STAR experiment at RHIC includes a large-area GEM tracker used to determine the charge sign of electrons and positrons produced from W+(-) decays. For such a large-scale project commercial availability of GEM foils is necessary. We report first results obtained with a triple GEM detector using GEM foils produced by Tech-Etch Inc. of Plymouth, MA, USA. Measurements of gain uniformity, long-term stability as well as measurements of the energy resolution for X-Rays are compared to results obtained with an identical detector using GEM foils produced at CERN. A quality assurance procedure based on optical tests using an automated high-resolution scanner has been established, allowing a study of the correlation of the observed behavior of the detector and the geometrical properties of the GEM foils. Detectors based on Tech-Etch and CERN produced foils both show good uniformity of the gain over the active area and stable gain after an initial charge-up period, making them well suited for precision tracking applications.
Proposal for a Hadron Blind Detector for PHENIX
A Hadron Blind Detector (HBD) is proposed as upgrade of the PHENIX detector at RHIC, BNL. The HBD will allow the measurement of low-mass e+e- pairs from the decay of the light vector mesons rho, omega, phi and the low-mass continuum in Au-Au collisions at energies up to sqrt{s_{NN}}= 200 GeV. From MC simulations and general considerations, the HBD has to identify electrons with very high efficiency (> 90%), double hit recognition better than 90%, moderate pion rejection factor of ~200 and radiation budget of the order of 1% of a radiation length. The first choice under study is a windowless Cherenkov detector, operated with pure CF4, in a special proximity focus configuration with a CsI photocathode and a multistage GEM amplification element.
Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC
A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the \\(e^{+}e^{-}\\) mass spectrum, mainly in the low-mass region below 1 GeV/c\\(^{2}\\). The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF\\(_{4}\\) as a radiator and a detector gas. Construction details and the expected performance of the detector are described.