Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Bödding, Matthias"
Sort by:
Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells
The detection of changes in volume and osmolality is an essential function in vertebrate cells. A novel member of the transient receptor potential (trp) family of ion channels, which is sensitive to changes in cell volume, has been described recently. Heterologous expression of TRP12 in HEK cells resulted in the appearance of a swelling-activated cation current. The permeability sequence of this cation current for various monovalent cations, as determined from shifts in reversal potential upon extracellular cation substitution, was PK>PCs>PNa>PLi, corresponding to an Eisenman-IV sequence characteristic for a weak-field-strength site. Surprisingly, over-expression of this channel in HEK cells was accompanied by a dramatic down-regulation of the volume-regulated anion channel (VRAC), which is activated by cell swelling in non-transfected cells. In contrast to VRAC, TRP12 could not be activated at constant volume by a reduction of intracellular ionic strength or by intracellular perfusion with guanosine 5'-O-(3-thiotriphosphate (GTPgammaS). The kinetic and pharmacological profile of VRAC and TRP12 currents were also different.
Efficacy, safety, and palatability of arpraziquantel (L-praziquantel) orodispersible tablets in children aged 3 months to 6 years infected with Schistosoma in Côte d'Ivoire and Kenya: an open-label, partly randomised, phase 3 trial
WHO has underlined the need for a child-friendly treatment for schistosomiasis, a prevalent parasitic disease in low-income and middle-income countries. After successful phase 1 and 2 trials, we aimed to evaluate the efficacy, safety, palatability, and pharmacokinetics of arpraziquantel (L-praziquantel) orodispersible tablets for preschool-aged children. This open-label, partly randomised, phase 3 study was conducted at two hospitals in Côte d'Ivoire and Kenya. Children with a minimum bodyweight of 5 kg in those aged 3 months to 2 years and 8 kg in those aged 2–6 years were eligible. In cohort 1, participants aged 4–6 years infected with Schistosoma mansoni were randomly assigned (2:1) to receive a single dose of oral arpraziquantel 50 mg/kg (cohort 1a) or oral praziquantel 40 mg/kg (cohort 1b) using a computer-generated randomisation list. Cohorts 2 (aged 2–3 years) and 3 (aged 3 months to 2 years) infected with S mansoni, and the first 30 participants in cohort 4a (aged 3 months to 6 years) infected with Schistosoma haematobium, received a single dose of oral arpraziquantel 50 mg/kg. After follow-up assessments, arpraziquantel was increased to 60 mg/kg (cohort 4b). Laboratory personnel were masked to the treatment group, screening, and baseline values. S mansoni was detected using a point-of-care circulating cathodic antigen urine cassette test and confirmed using the Kato-Katz method. The primary efficacy endpoint was clinical cure rate at 17–21 days after treatment in cohorts 1a and 1b, measured in the modified intention-to-treat population and calculated using the Clopper-Pearson method. This study is registered with ClinicalTrials.gov, NCT03845140. Between Sept 2, 2019, and Aug 7, 2021, 2663 participants were prescreened and 326 were diagnosed with S mansoni or S haematobium. 288 were enrolled (n=100 in cohort 1a, n=50 in cohort 1b, n=30 in cohort 2, n=18 in cohort 3, n=30 in cohort 4a, and n=60 in cohort 4b), but eight participants received antimalarial drugs and were excluded from the efficacy analyses. The median age was 5·1 years (IQR 4·1–6·0) and 132 (47%) of 280 participants were female and 148 (53%) were male. Cure rates with arpraziquantel were similar to those with praziquantel (87·8% [95% CI 79·6–93·5] in cohort 1a vs 81·3% [67·4–91·1] in cohort 1b). No safety concerns were identified during the study. The most common drug-related treatment-emergent adverse events were abdominal pain (41 [14%] of 288 participants), diarrhoea (27 [9%]), vomiting (16 [6%]), and somnolence (21 [7%]). Arpraziquantel, a first-line orodispersible tablet, showed high efficacy and favourable safety in preschool-aged children with schistosomiasis. The Global Health Innovative Technology Fund, the European and Developing Countries Clinical Trials Partnership, and the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945).
Causal chemoprophylactic activity of cabamiquine against Plasmodium falciparum in a controlled human malaria infection: a randomised, double-blind, placebo-controlled study in the Netherlands
Cabamiquine is a novel antimalarial that inhibits Plasmodium falciparum translation elongation factor 2. We investigated the causal chemoprophylactic activity and dose–exposure–response relationship of single oral doses of cabamiquine following the direct venous inoculation (DVI) of P falciparum sporozoites in malaria-naive, healthy volunteers. This was a phase 1b, randomised, double-blind, placebo-controlled, adaptive, dose-finding, single-centre study performed in Leiden, Netherlands. Malaria-naive, healthy adults aged 18–45 years were divided into five cohorts and randomly assigned (3:1) to receive cabamiquine or placebo. Randomisation was done by an independent statistician using codes in a permuted block schedule with a block size of four. Participants, investigators, and study personnel were masked to treatment allocation. A single, oral dose regimen of cabamiquine (200, 100, 80, 60, or 30 mg) or matching placebo was administered either at 2 h (early liver-stage) or 96 h (late liver-stage) after DVI. The primary endpoints based on a per-protocol analysis set were the number of participants who developed parasitaemia within 28 days of DVI, time to parasitaemia, number of participants with documented parasite blood-stage growth, clinical symptoms of malaria, and exposure–efficacy modelling. The impact of cabamiquine on liver stages was evaluated indirectly by the appearance of parasitaemia in the blood. The Clopper–Pearson CI (nominal 95%) was used to express the protection rate. The secondary outcomes were safety and tolerability, assessed in those who had received DVI and were administered one dose of the study intervention. The trial was prospectively registered on ClinicalTrials.gov (NCT04250363). Between Feb 17, 2020 and April 29, 2021, 39 healthy participants were enrolled (early liver-stage: 30 mg [n=3], 60 mg [n=6], 80 mg [n=6], 100 mg [n=3], 200 mg [n=3], pooled placebo [n=6]; late liver-stage: 60 mg [n=3], 100 mg [n=3], 200 mg [n=3], pooled placebo [n=3]). A dose-dependent causal chemoprophylactic effect was observed, with four (67%) of six participants in the 60 mg, five (83%) of six participants in the 80 mg, and all three participants in the 100 and 200 mg cabamiquine dose groups protected from parasitaemia up to study day 28, whereas all participants in the pooled placebo and 30 mg cabamiquine dose group developed parasitaemia. A single, oral dose of 100 mg cabamiquine or higher provided 100% protection against parasitaemia when administered during early or late liver-stage malaria. The median time to parasitaemia in those with early liver-stage malaria was prolonged to 15, 22, and 24 days for the 30, 60, and 80 mg dose of cabamiquine, respectively, compared with 10 days for the pooled placebo. All participants with positive parasitaemia showed documented blood-stage parasite growth, apart from one participant in the pooled placebo group and one participant in the 30 mg cabamiquine group. Most participants did not exhibit any malaria symptoms in both the early and late liver-stage groups, and those reported were mild in severity. A positive dose–exposure–efficacy relationship was established across exposure metrics. The median maximum concentration time was 1–6 h, with a secondary peak observed between 6 h and 12 h in all cabamiquine dose groups (early liver-stage). All cabamiquine doses were safe and well tolerated. Overall, 26 (96%) of 27 participants in the early liver-stage group and ten (83·3%) of 12 participants in the late liver-stage group reported at least one treatment-emergent adverse event (TEAE) with cabamiquine or placebo. Most TEAEs were of mild severity, transient, and resolved without sequelae. The most frequently reported cabamiquine-related TEAE was headache. No dose-related trends were observed in the incidence, severity, or causality of TEAEs. The results from this study show that cabamiquine has a dose-dependent causal chemoprophylactic activity. Together with previously demonstrated activity against the blood stages combined with a half-life of more than 150 h, these results indicate that cabamiquine could be developed as a single-dose monthly regimen for malaria prevention. The healthcare business of Merck KGaA, Darmstadt, Germany.
Histamine-induced Ca2+ release in bovine adrenal chromaffin cells
The histamine-induced biphasic increase of the intracellular free [Ca2+] ([Ca2+]i) was studied in bovine adrenal chromaffin cells using fura-2 microfluorimetry and the whole-cell patch-clamp technique. Both the rapid, transient Ca2+ rise and the sustained plateau component of elevated [Ca2+]i were independent of extracellular Ca2+. Incubation with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) blocker thapsigargin diminished histamine-induced changes in [Ca2+]i. When Ca2+ release was either stimulated by IP3 or blocked with the competitive inhibitor heparin, histamine was unable to elicit the typical Ca2+ rise. Ryanodine, tetracaine and ruthenium red, all blockers of Ca2+ release from caffeine-sensitive stores, had only minor effects on the agonist-induced Ca2+ changes. The contribution of mitochondria in shaping the histamine-induced Ca2+ increase was studied using ruthenium red and the two proton ionophores carbonylcyanide m-chlorophenylhydrazone (CCCP) and carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP). Both mitochondrial uncouplers reversibly increased [Ca2+]i and induced an inward current leading to cell membrane depolarisation. In summary, these results indicate that Ca2+ from IP3-sensitive stores is essential for the generation of both the transient increase and secondary elevation in [Ca2+]i.