Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
19
result(s) for
"Baber, Junaid"
Sort by:
Efficient Detection and Tracking of Human Using 3D LiDAR Sensor
2023
Light Detection and Ranging (LiDAR) technology is now becoming the main tool in many applications such as autonomous driving and human–robot collaboration. Point-cloud-based 3D object detection is becoming popular and widely accepted in the industry and everyday life due to its effectiveness for cameras in challenging environments. In this paper, we present a modular approach to detect, track and classify persons using a 3D LiDAR sensor. It combines multiple principles: a robust implementation for object segmentation, a classifier with local geometric descriptors, and a tracking solution. Moreover, we achieve a real-time solution in a low-performance machine by reducing the number of points to be processed by obtaining and predicting regions of interest via movement detection and motion prediction without any previous knowledge of the environment. Furthermore, our prototype is able to successfully detect and track persons consistently even in challenging cases due to limitations on the sensor field of view or extreme pose changes such as crouching, jumping, and stretching. Lastly, the proposed solution is tested and evaluated in multiple real 3D LiDAR sensor recordings taken in an indoor environment. The results show great potential, with particularly high confidence in positive classifications of the human body as compared to state-of-the-art approaches.
Journal Article
Transfer Learning Approach for Classification of Histopathology Whole Slide Images
2021
The classification of whole slide images (WSIs) provides physicians with an accurate analysis of diseases and also helps them to treat patients effectively. The classification can be linked to further detailed analysis and diagnosis. Deep learning (DL) has made significant advances in the medical industry, including the use of magnetic resonance imaging (MRI) scans, computerized tomography (CT) scans, and electrocardiograms (ECGs) to detect life-threatening diseases, including heart disease, cancer, and brain tumors. However, more advancement in the field of pathology is needed, but the main hurdle causing the slow progress is the shortage of large-labeled datasets of histopathology images to train the models. The Kimia Path24 dataset was particularly created for the classification and retrieval of histopathology images. It contains 23,916 histopathology patches with 24 tissue texture classes. A transfer learning-based framework is proposed and evaluated on two famous DL models, Inception-V3 and VGG-16. To improve the productivity of Inception-V3 and VGG-16, we used their pre-trained weights and concatenated these with an image vector, which is used as input for the training of the same architecture. Experiments show that the proposed innovation improves the accuracy of both famous models. The patch-to-scan accuracy of VGG-16 is improved from 0.65 to 0.77, and for the Inception-V3, it is improved from 0.74 to 0.79.
Journal Article
Human Arm Motion Prediction for Collision Avoidance in a Shared Workspace
2022
Industry 4.0 transforms classical industrial systems into more human-centric and digitized systems. Close human–robot collaboration is becoming more frequent, which means security and efficiency issues need to be carefully considered. In this paper, we propose to equip robots with exteroceptive sensors and online motion generation so that the robot is able to perceive and predict human trajectories and react to the motion of the human in order to reduce the occurrence of the collisions. The dataset for training is generated in a real environment in which a human and a robot are sharing their workspace. An Encoder–Decoder based network is proposed to predict the human hand trajectories. A Model Predictive Control (MPC) framework is also proposed, which is able to plan a collision-free trajectory in the shared workspace based on this human motion prediction. The proposed framework is validated in a real environment that ensures collision free collaboration between humans and robots in a shared workspace.
Journal Article
Vulnerability detection in Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based hybrid feature extraction
2024
Software vulnerabilities pose a significant threat to system security, necessitating effective automatic detection methods. Current techniques face challenges such as dependency issues, language bias, and coarse detection granularity. This study presents a novel deep learning-based vulnerability detection system for Java code. Leveraging hybrid feature extraction through graph and sequence-based techniques enhances semantic and syntactic understanding. The system utilizes control flow graphs (CFG), abstract syntax trees (AST), program dependencies (PD), and greedy longest-match first vectorization for graph representation. A hybrid neural network (GCN-RFEMLP) and the pre-trained CodeBERT model extract features, feeding them into a quantum convolutional neural network with self-attentive pooling. The system addresses issues like long-term information dependency and coarse detection granularity, employing intermediate code representation and inter-procedural slice code. To mitigate language bias, a benchmark software assurance reference dataset is employed. Evaluations demonstrate the system's superiority, achieving 99.2% accuracy in detecting vulnerabilities, outperforming benchmark methods. The proposed approach comprehensively addresses vulnerabilities, including improper input validation, missing authorizations, buffer overflow, cross-site scripting, and SQL injection attacks listed by common weakness enumeration (CWE).
Journal Article
Attention-Based RU-BiLSTM Sentiment Analysis Model for Roman Urdu
by
Imran, Ali Shariq
,
Baber, Junaid
,
Bakhtyar, Maheen
in
attention networks
,
Classification
,
Datasets
2022
Deep neural networks have emerged as a leading approach towards handling many natural language processing (NLP) tasks. Deep networks initially conquered the problems of computer vision. However, dealing with sequential data such as text and sound was a nightmare for such networks as traditional deep networks are not reliable in preserving contextual information. This may not harm the results in the case of image processing where we do not care about the sequence, but when we consider the data collected from text for processing, such networks may trigger disastrous results. Moreover, establishing sentence semantics in a colloquial text such as Roman Urdu is a challenge. Additionally, the sparsity and high dimensionality of data in such informal text have encountered a significant challenge for building sentence semantics. To overcome this problem, we propose a deep recurrent architecture RU-BiLSTM based on bidirectional LSTM (BiLSTM) coupled with word embedding and an attention mechanism for sentiment analysis of Roman Urdu. Our proposed model uses the bidirectional LSTM to preserve the context in both directions and the attention mechanism to concentrate on more important features. Eventually, the last dense softmax output layer is used to acquire the binary and ternary classification results. We empirically evaluated our model on two available datasets of Roman Urdu, i.e., RUECD and RUSA-19. Our proposed model outperformed the baseline models on many grounds, and a significant improvement of 6% to 8% is achieved over baseline models.
Journal Article
Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System
by
Leonowicz, Zbigniew
,
Baber, Junaid
,
Hussain, Shumaila
in
Artificial intelligence
,
automatic emotion recognition
,
Brain
2022
Emotions play a vital role in education. Technological advancement in computer vision using deep learning models has improved automatic emotion recognition. In this study, a real-time automatic emotion recognition system is developed incorporating novel salient facial features for classroom assessment using a deep learning model. The proposed novel facial features for each emotion are initially detected using HOG for face recognition, and automatic emotion recognition is then performed by training a convolutional neural network (CNN) that takes real-time input from a camera deployed in the classroom. The proposed emotion recognition system will analyze the facial expressions of each student during learning. The selected emotional states are happiness, sadness, and fear along with the cognitive–emotional states of satisfaction, dissatisfaction, and concentration. The selected emotional states are tested against selected variables gender, department, lecture time, seating positions, and the difficulty of a subject. The proposed system contributes to improve classroom learning.
Journal Article
Towards intelligent P2P IPTV overlay management through classification of peers
2022
IPTV has emerged as one of the popular Internet applications attracting immense interest of academia and industry. Among others, Peer-to-Peer (P2P) approach enables IPTV service with ease of deployment and low cost. P2P systems involve end-hosts, called peers, to share their resources for dissemination of stream. In these systems, user activities, such as join and quit operations, translate as activities of peers. Due to this reason, these systems become highly dynamic as the behavior of users has a significant impact on the stream delivery performance of the whole system. Earlier P2P approaches deal with user behavior indirectly through enabling resilience in the system, which leads to other issues such as increased latency. Latter approaches attempt to address user behavior directly through proposing user behavior models. Such models focus to learn and predict user behavior in order to adapt the overlay network accordingly. Towards this, one important aspect is the classification of users. However, machine-learning classifiers have not been extensively evaluated for their accuracy over the classification problem. In this paper, we extensively evaluate numerous classifiers for their accuracy over different parameters. These results may be used to design intelligent P2P overlays for IPTV services providing better performance in terms of efficient stream delivery to users. Our results show that the Decision tree classifier performs better than other classifiers for this particular problem.
Journal Article
Video Scene Detection Using Compact Bag of Visual Word Models
2018
Video segmentation into shots is the first step for video indexing and searching. Videos shots are mostly very small in duration and do not give meaningful insight of the visual contents. However, grouping of shots based on similar visual contents gives a better understanding of the video scene; grouping of similar shots is known as scene boundary detection or video segmentation into scenes. In this paper, we propose a model for video segmentation into visual scenes using bag of visual word (BoVW) model. Initially, the video is divided into the shots which are later represented by a set of key frames. Key frames are further represented by BoVW feature vectors which are quite short and compact compared to classical BoVW model implementations. Two variations of BoVW model are used: (1) classical BoVW model and (2) Vector of Linearly Aggregated Descriptors (VLAD) which is an extension of classical BoVW model. The similarity of the shots is computed by the distances between their key frames feature vectors within the sliding window of length L, rather comparing each shot with very long lists of shots which has been previously practiced, and the value of L is 4. Experiments on cinematic and drama videos show the effectiveness of our proposed framework. The BoVW is 25000-dimensional vector and VLAD is only 2048-dimensional vector in the proposed model. The BoVW achieves 0.90 segmentation accuracy, whereas VLAD achieves 0.83.
Journal Article
An efficient cluster optimization framework for internet of things (IoT) based Wireless Body Area Networks
by
Baber, Junaid
,
Aadil, Farhan
,
Ejaz Sheikh, Sadia
in
Algorithms
,
Alliances
,
Anatomical systems
2023
PurposeWireless Body Area Network (WBAN) technology envisions a network in which sensors continuously operate on and obtained critical physical and physiological readings. Sensors deployed in WBANs have restricted resources such as battery energy, computing power and bandwidth. We can utilize these resources efficiently. By devising a mechanism that is energy efficient with following characteristics, i.e. computational complexity is less, routing overhead is minimized, and throughput will be maximum. A lot of work has been done in this area but still WBAN faces some challenges like mobility, network lifetime, transmission range, heterogeneous environment, and limited resources. In the present years well, contemplative studies have been made through a large body to reach some holistic points pertaining to the energy consumption in WBAN. Thus we/put forward appropriate algorithm for energy efficiency which can vividly corroborate the advances in this specific domain. We have also focused on various aspects and phases of the studies like study computational complexity, routing overhead and throughput type of characteristics. There is still a room for improvement to get the desired energy optimization in WBAN. The network performance mainly relies upon the algorithm used for optimization process. In this work, we intended to develop an energy optimization algorithm for energy consumption in WBAN which is based on evolutionary algorithms for inter-BAN communications using cluster-based routing protocol.Design/methodology/approachIn this paper we propose a meta heuristics algorithm Goa to solve the optimization problem in WBAN. Grasshopper is an insect. Generally, this insect is viewed individually and creating large swarm in nature. Figure 5 shows the individual grasshoppers' primitive patterns in swarm. Figure 7 depicts the pseudo code of Goa. In Goa, experiments are done to view the behavior of grasshoppers in swarm. How they gradually move towards the stationary and mobile target. Through experimentation it is conceived that swarm gradually converge towards their target. Another interesting pattern related to convergence of grasshopper is that it slowly towards its target. This shows that grasshopper does not trapped in local optima. In starting iterations of exploration process Goa, search globally and in last iterations it searches local optima. Goa makes the exploration and exploitation process balanced while solving challenging optimization problems.FindingsEnergy efficiency is achieved in the optimization process of cluster formation process. As the use of proposed algorithm Goa creates the optimal number of clusters. Shorter cluster lifetime means more times clustering procedure is called. It increases the network computational cost and the communication overhead. Experimentation results show that proposed Goa algorithm performs well. We compare the results of Goa with existing optimization Algorithms ACO and MFO. Results are generated using MATLAB.Originality/valueA lot of work has done for the sake of energy optimization in WBAN. Many algorithms are proposed in past for energy optimization of WBAN. All of them have some strengths and weaknesses. In this paper we propose a nature inspired algorithm Goa. We use the Goa algorithm for the sake of energy optimization in WBAN.
Journal Article