Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Bacelis, Jonas"
Sort by:
Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis
Observational epidemiological studies indicate that maternal height is associated with gestational age at birth and fetal growth measures (i.e., shorter mothers deliver infants at earlier gestational ages with lower birth weight and birth length). Different mechanisms have been postulated to explain these associations. This study aimed to investigate the casual relationships behind the strong association of maternal height with fetal growth measures (i.e., birth length and birth weight) and gestational age by a Mendelian randomization approach. We conducted a Mendelian randomization analysis using phenotype and genome-wide single nucleotide polymorphism (SNP) data of 3,485 mother/infant pairs from birth cohorts collected from three Nordic countries (Finland, Denmark, and Norway). We constructed a genetic score based on 697 SNPs known to be associated with adult height to index maternal height. To avoid confounding due to genetic sharing between mother and infant, we inferred parental transmission of the height-associated SNPs and utilized the haplotype genetic score derived from nontransmitted alleles as a valid genetic instrument for maternal height. In observational analysis, maternal height was significantly associated with birth length (p = 6.31 × 10-9), birth weight (p = 2.19 × 10-15), and gestational age (p = 1.51 × 10-7). Our parental-specific haplotype score association analysis revealed that birth length and birth weight were significantly associated with the maternal transmitted haplotype score as well as the paternal transmitted haplotype score. Their association with the maternal nontransmitted haplotype score was far less significant, indicating a major fetal genetic influence on these fetal growth measures. In contrast, gestational age was significantly associated with the nontransmitted haplotype score (p = 0.0424) and demonstrated a significant (p = 0.0234) causal effect of every 1 cm increase in maternal height resulting in ~0.4 more gestational d. Limitations of this study include potential influences in causal inference by biological pleiotropy, assortative mating, and the nonrandom sampling of study subjects. Our results demonstrate that the observed association between maternal height and fetal growth measures (i.e., birth length and birth weight) is mainly defined by fetal genetics. In contrast, the association between maternal height and gestational age is more likely to be causal. In addition, our approach that utilizes the genetic score derived from the nontransmitted maternal haplotype as a genetic instrument is a novel extension to the Mendelian randomization methodology in casual inference between parental phenotype (or exposure) and outcomes in offspring.
Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth
Infant and childhood growth are dynamic processes with large changes in BMI during development. By performing genome-wide association studies of BMI at 12 time points from birth to eight years (9286 children, 74,105 measurements) in the Norwegian Mother, Father, and Child Cohort Study, replicated in 5235 children, we identify a transient effect in the leptin receptor ( LEPR ) locus: no effect at birth, increasing effect in infancy, peaking at 6–12 months (rs2767486, P 6m   =  2.0 × 10 −21 , β 6m  = 0.16 sd-BMI), and little effect after age five. We identify a similar transient effect near the leptin gene ( LEP) , peaking at 1.5 years (rs10487505, P 1.5y  = 1.3 × 10 −8 , β 1.5y  = 0.079 sd-BMI). Both signals are protein quantitative trait loci for soluble-LEPR and LEP in plasma in adults independent from adult traits mapped to the respective genes, suggesting key roles of common variation in the leptin signaling pathway for healthy infant growth. Changes in body mass index (BMI) during infancy and childhood follow a well-characterized pattern. Here, Helgeland et al. perform genome-wide association studies for BMI at 12 time points between birth and 8 years of age and find transient associations at the LEP and LEPR loci.
Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs
Many maternal traits are associated with a neonate's gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects behind these observed associations are unresolved. Based on 10,734 mother-infant duos of European ancestry from the UK, Northern Europe, Australia, and North America, we constructed haplotype genetic scores using single-nucleotide polymorphisms (SNPs) known to be associated with adult height, body mass index (BMI), blood pressure (BP), fasting plasma glucose (FPG), and type 2 diabetes (T2D). Using these scores as genetic instruments, we estimated the maternal and fetal genetic effects underlying the observed associations between maternal phenotypes and pregnancy outcomes. We also used infant-specific birth weight genetic scores as instrument and examined the effects of fetal growth on pregnancy outcomes, maternal BP, and glucose levels during pregnancy. The maternal nontransmitted haplotype score for height was significantly associated with gestational duration (p = 2.2 × 10-4). Both maternal and paternal transmitted height haplotype scores were highly significantly associated with birth weight and length (p < 1 × 10-17). The maternal transmitted BMI scores were associated with birth weight with a significant maternal effect (p = 1.6 × 10-4). Both maternal and paternal transmitted BP scores were negatively associated with birth weight with a significant fetal effect (p = 9.4 × 10-3), whereas BP alleles were significantly associated with gestational duration and preterm birth through maternal effects (p = 3.3 × 10-2 and p = 4.5 × 10-3, respectively). The nontransmitted haplotype score for FPG was strongly associated with birth weight (p = 4.7 × 10-6); however, the glucose-increasing alleles in the fetus were associated with reduced birth weight through a fetal effect (p = 2.2 × 10-3). The haplotype scores for T2D were associated with birth weight in a similar way but with a weaker maternal effect (p = 6.4 × 10-3) and a stronger fetal effect (p = 1.3 × 10-5). The paternal transmitted birth weight score was significantly associated with reduced gestational duration (p = 1.8 × 10-4) and increased maternal systolic BP during pregnancy (p = 2.2 × 10-2). The major limitations of the study include missing and heterogenous phenotype data in some data sets and different instrumental strength of genetic scores for different phenotypic traits. We found that both maternal height and fetal growth are important factors in shaping the duration of gestation: genetically elevated maternal height is associated with longer gestational duration, whereas alleles that increase fetal growth are associated with shorter gestational duration. Fetal growth is influenced by both maternal and fetal effects and can reciprocally influence maternal phenotypes: taller maternal stature, higher maternal BMI, and higher maternal blood glucose are associated with larger birth size through maternal effects; in the fetus, the height- and metabolic-risk-increasing alleles are associated with increased and decreased birth size, respectively; alleles raising birth weight in the fetus are associated with shorter gestational duration and higher maternal BP. These maternal and fetal genetic effects may explain the observed associations between the studied maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes.
Haplotype-based analysis distinguishes maternal-fetal genetic contribution to pregnancy-related outcomes
Genotype-based approaches for the estimation of SNP-based narrow-sense heritability ( h ^ 2 ) have limited utility in pregnancy-related outcomes due to confounding by the shared alleles between mother and child. Here, we propose a haplotype-based approach to estimate the genetic variance attributable to three haplotypes - maternal transmitted ( h ^ m1 2 ), maternal non-transmitted ( h ^ m2 2 ) and paternal transmitted ( h ^ p1 2 ) in mother-child pairs. We show through extensive simulations that our haplotype-based approach outperforms the conventional and contemporary approaches for resolving the contribution of maternal and fetal effects, particularly when m1 and p1 have different effects in the offspring. We apply this approach to estimate the explicit and relative maternal-fetal genetic contribution to the phenotypic variance of gestational duration and gestational duration-adjusted fetal size measurements at birth in 10,375 mother-child pairs. The results reveal that variance of gestational duration is mainly attributable to m1 and m2 ( h ^ m1 2 = 17.3 % , S . E . = 5.2 % ; h ^ m2 2 = 12.2 % , S . E . = 5.2 % ; h ^ p1 2 = 0.0 % , S . E . = 5.0 % ). In contrast, variance of fetal size measurements at birth are mainly attributable to m1 and p1 ( h ^ m1 2 = 18.6 − 36.4 % , h ^ m2 2 = 0.0 − 5.2 % and h ^ p1 2 = 4.4 − 13.6 % ). Our results suggest that gestational duration and fetal size measurements are primarily genetically determined by the maternal and fetal genomes, respectively. In addition, a greater contribution of m1 as compared to m2 and p1 ( h ^ m1 2 − h ^ m2 2 − h ^ p1 2 > 0 ) to birth length and head circumference suggests a substantial influence of correlated maternal-fetal genetic effects on these traits. Our newly developed approach provides a direct and robust alternative for resolving explicit maternal and fetal genetic contributions to the phenotypic variance of pregnancy-related outcomes.
A family-based genome-wide association study of chronic rhinosinusitis with nasal polyps implicates several genes in the disease pathogenesis
The pathogenesis of chronic rhinosinusitis with nasal polyps is largely unknown. Previous studies have given valuable information about genetic variants associated with this disease but much is still unexplained. Our goal was to identify genetic markers and genes associated with susceptibility to chronic rhinosinusitis with nasal polyps using a family-based genome-wide association study. 427 patients (293 males and 134 females) with CRSwNP and 393 controls (175 males and 218 females) were recruited from several Swedish hospitals. SNP association values were generated using DFAM (implemented in PLINK) and Efficient Mixed Model Association eXpedited (EMMAX). Analyses of pathway enrichment, gene expression levels and expression quantitative trait loci were then performed in turn. None of the analysed SNPs reached genome wide significant association of 5.0 x 10-8. Pathway analyses using our top 1000 markers with the most significant association p-values resulted in 138 target genes. A comparison between our target genes and gene expression data from the NCBI Gene Expression Omnibus database showed significant overlap for 36 of these genes. Comparisons with data from expression quantitative trait loci showed the most skewed allelic distributions in cases with chronic rhinosinusitis with nasal polyps compared with controls for the genes HLCS, HLA-DRA, BICD2, VSIR and SLC5A1. Our study indicates that HLCS, HLA-DRA, BICD2, VSIR and SLC5A1 could be involved in the pathogenesis of chronic rhinosinusitis with nasal polyps. HLA-DRA has been associated with chronic rhinosinusitis with nasal polyps in previous studies and HLCS, BICD2, VSIR and SLC5A1 may be new targets for future research.
Characterization of the genetic architecture of infant and early childhood body mass index
Early childhood obesity is a growing global concern; however, the role of common genetic variation on infant and child weight development is unclear. Here, we identify 46 loci associated with early childhood body mass index at specific ages, matching different child growth phases, and representing four major trajectory patterns. We perform genome-wide association studies across 12 time points from birth to 8 years in 28,681 children and their parents (27,088 mothers and 26,239 fathers) in the Norwegian Mother, Father and Child Cohort Study. Monogenic obesity genes are overrepresented near identified loci, and several complex association signals near LEPR , GLP1R , PCSK1 and KLF14 point towards a major influence for common variation affecting the leptin–melanocortin system in early life, providing a link to putative treatment strategies. We also demonstrate how different polygenic risk scores transition from birth to adult profiles through early child growth. In conclusion, our results offer a fine-grained characterization of a changing genetic landscape sustaining early childhood growth. Helgeland et al. characterize genetic loci associated with early childhood body mass index, highlighting roles of genes involved in monogenic obesity, appetite regulation and energy expenditure, many of which show age-specific association patterns.
A Possible Mechanism behind Autoimmune Disorders Discovered By Genome-Wide Linkage and Association Analysis in Celiac Disease
Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS) have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1) polarity and epithelial cell functionality; 2) intestinal smooth muscle; 3) growth and energy homeostasis, including proline and glutamine metabolism; and finally 4) innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly also other chronic disorders with an inflammatory component.
Literature-Informed Analysis of a Genome-Wide Association Study of Gestational Age in Norwegian Women and Children Suggests Involvement of Inflammatory Pathways
Five-to-eighteen percent of pregnancies worldwide end in preterm birth, which is the major cause of neonatal death and morbidity. Approximately 30% of the variation in gestational age at birth can be attributed to genetic factors. Genome-wide association studies (GWAS) have not shown robust evidence of association with genomic loci yet. We separately investigated 1921 Norwegian mothers and 1199 children from pregnancies with spontaneous onset of delivery. Individuals were further divided based on the onset of delivery: initiated by labor or prelabor rupture of membranes. Genetic association with ultrasound-dated gestational age was evaluated using three genetic models and adaptive permutations. The top-ranked loci were tested for enrichment in 12 candidate gene-sets generated by text-mining PubMed abstracts containing pregnancy-related keywords. The six GWAS did not reveal significant associations, with the most extreme empirical p = 5.1 × 10-7. The top loci from maternal GWAS with deliveries initiated by labor showed significant enrichment in 10 PubMed gene-sets, e.g., p = 0.001 and 0.005 for keywords \"uterus\" and \"preterm\" respectively. Enrichment signals were mainly caused by infection/inflammation-related genes TLR4, NFKB1, ABCA1, MMP9. Literature-informed analysis of top loci revealed further immunity genes: IL1A, IL1B, CAMP, TREM1, TFRC, NFKBIA, MEFV, IRF8, WNT5A. Our analyses support the role of inflammatory pathways in determining pregnancy duration and provide a list of 32 candidate genes for a follow-up work. We observed that the top regions from GWAS in mothers with labor-initiated deliveries significantly more often overlap with pregnancy-related genes than would be expected by chance, suggesting that increased sample size would benefit similar studies.
Time-Variant Genetic Effects as a Cause for Preterm Birth: Insights from a Population of Maternal Cousins in Sweden
Preterm delivery (PTD) is the leading cause of neonatal mortality worldwide, yet its etiology remains largely unexplained. We propose that the genetic factors controlling this trait could act in a nonuniform manner during pregnancy, with each factor having a unique “window of sensitivity.” We test this hypothesis by modeling the distribution of gestational ages (GAs) observed in maternal cousins from the Swedish Medical Birth Register (MBR) (n = 35,541 pairs). The models were built using a time-to-event framework, with simulated genetic factors that increase the hazard of birth either uniformly across the pregnancy (constant effect) or only in particular windows (varying effect). By including various combinations of these factors, we obtained four models that were then optimized and compared. Best fit to the clinical data was observed when most of the factors had time-variant effects, independently of the number of loci simulated. Finally, power simulations were performed to assess the ability to discover varying-effect loci by usual methods for genome-wide association testing. We believe that the tools and concepts presented here should prove useful for the design of future studies of PTD and provide new insights into the genetic architecture determining human GA.
Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study
Background Health authorities in numerous countries recommend periconceptional folic acid supplementation to prevent neural tube defects. The objective of this study was to examine the association of dietary folate intake and folic acid supplementation during different periods of pregnancy with the risk of spontaneous preterm delivery (PTD). Methods The Norwegian Mother and Child Cohort Study is a population-based prospective cohort study. A total of 66,014 women with singleton pregnancies resulting in live births in 2002–2009 were included. Folic acid supplementation was self-reported from 26 weeks before pregnancy until pregnancy week 24. At gestational week 22, the women completed a food frequency questionnaire, which allowed the calculation of their average total folate intake from foods and supplements for the first 4–5 months of pregnancy. Spontaneous PTD was defined as the spontaneous onset of delivery between weeks 22 +0 and 36 +6 (n = 1,755). Results The median total folate intake was 313 μg/d (interquartile range IQR 167–5558) in the overall population and 530 μg/d (IQR 355–5636) in the supplement users. Eighty-five percent reported any folic acid supplementation from <8 weeks before to 24 weeks after conception while only 44% initiated folic acid supplementation before pregnancy. Cox regression analysis showed that the amount of dietary folate intake (hazard ratio HR 1.00; confidence interval 95% CI 0.61-1.65) and supplemental folate intake (HR 1.00; CI 1.00-1.00) was not significantly associated with the risk of PTD. The initiation of folic acid supplementation more than 8 weeks before conception was associated with an increased risk for spontaneous PTD (HR 1.18; CI 1.05-1.32) compared to no folic acid supplementation preconception. There was no significant association with PTD when supplementation was initiated within 8 weeks preconception (HR 0.99; CI 0.87-1.13). All analyses were adjusted for maternal characteristics and socioeconomic, health and dietary variables. Conclusions Our findings do not support a protective effect of dietary folate intake or folic acid supplementation on spontaneous PTD. Preconceptional folic acid supplementation starting more than 8 weeks before conception was associated with an increased risk of spontaneous PTD. These results require further investigation before discussing an expansion of folic acid supplementation guidelines.